2023年度 人工知能学会全国大会(第37回)

講演情報

国際セッション

国際セッション » IS-3 Agents

[3U1-IS-3] Agents

2023年6月8日(木) 09:00 〜 10:40 U会場 (遠隔)

Chair: Hisashi Hayashi (Advanced institute of industrial technology)

09:00 〜 09:20

[3U1-IS-3-01] Quantitative Evaluation of Multi-agent Simulation using Generative Adversarial Network -- An Alternative of Qualitative Evaluation for Artificial Market Simulation

〇Masanori HIRANO1, Kiyoshi IZUMI1 (1. The University of Tokyo)

[[Online, Regular]]

キーワード:Multi-agent simulation, Generative adversarial network, Evaluation, Financial markets

Multi-agent simulations are useful in social sciences but they encounter an evaluation difficulty in that many social phenomena are qualitative, and it is difficult to evaluate quantitatively the realness of simulations. Therefore, we propose a new quantitative evaluation method for multi-agent simulation in social sciences using a generative adversarial network (GAN). In our proposed method, GAN's critic was used as a simulation evaluator. We implemented a GAN and a multi-agent simulation for financial markets in experiments to test the proposed method. Results showed that our proposed method achieved promising results as an alternative to the traditional qualitative evaluation; it enabled successful quantitative evaluation with good correspondence with the traditional qualitative evaluation. The realization of quantitative evaluation using GAN as an alternative to the traditional qualitative evaluation may expand the usage of multi-agent simulation.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード