2025年度 人工知能学会全国大会(第39回)

講演情報

国際セッション

国際セッション » IS-2 Machine learning

[3K6-IS-2c] Machine learning

2025年5月29日(木) 17:40 〜 19:20 K会場 (会議室1006)

Chair: 三浦 輝久

18:00 〜 18:20

[3K6-IS-2c-02] Music Therapy for Dialysis Stress Relief and Machine Learning-Based Classification

〇JIYUAN ZHANG1, Ken-ichi Fukui1,6, Tsukasa Kimura1, Noriko Otani3, Tetsuya Ohira2, Masayuki Numao4,5 (1. The University of OSAKA, 2. Fukushima Medical University, 3. Tokyo City University, 4. Kyoto Tachibana University, 5. SANKEN, The University of OSAKA, 6. Faculty of Business Data Science, Kansai University)

[[オンライン]]

キーワード:Machine Learning, EEG analysis, Music Therapy

This study investigates the effects of brAInMelody (AI-generated music) and normal music on stress reduction in dialysis patients using power spectral density (PSD) and phase synchronization index (PSI) analysis. While brAInMelody has reduced negative emotions in healthy individuals, its impact on dialysis patients is unexamined. The SE-VAE model was used for stress detection and therapy.

The study found that brAInMelody significantly improved valence, indicating reduced stress compared to normal music. PSI analysis showed variations in electrode connectivity, providing insights into neural synchronization under different music types. Additionally, SE-VAE outperformed other models (VAE, LSTM, and Transformer) with the highest AUC score (0.7458±0.0188), demonstrating its effectiveness for stress detection.

In conclusion, brAInMelody can reduce stress in dialysis patients, and SE-VAE proves reliable for stress identification.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード