2025年度 人工知能学会全国大会(第39回)

講演情報

国際セッション

国際セッション » IS-2 Machine learning

[4K2-IS-2e] Machine learning

2025年5月30日(金) 12:00 〜 13:40 K会場 (会議室1006)

Chair: 打矢 隆弘

13:20 〜 13:40

[4K2-IS-2e-05] Enhancing Sound-Based Sleep Quality Assessment by Multimodal Knowledge Distillation

〇Haoyu Lu1, Takafumi Kato2, Ken-ichi Fukui3,4 (1. Graduate School of Information Science and Technology, Osaka University, 2. Graduate School of Dentistry, Osaka University, 3. Faculty of Business Data Science, Kansai University, 4. SANKEN, Osaka University)

[[オンライン]]

キーワード:Sleep Quality Evaluation, Knowledge Distillation, Deep Learning

Sleep is vital for physical recovery, brain function, and emotional health. Polysomnography (PSG) is the gold standard for assessing sleep quality, but it is intrusive and impractical for widespread application. Sound data is a non-intrusive alternative, though its complexity makes extracting meaningful information difficult. This study enhances sound-based sleep quality assessment using a Knowledge Distillation (KD) framework. The teacher model integrates PSG features, physical factors, sleep stage data, sound data, and questionnaire factors, using a Gated Variable Selection Neural Network (GVSN) to identify key information from multimodal inputs. The student model uses physical factors and sound features extracted from one night’s sleep events and learns from the teacher via a SoftMax-based KD process. Results show the student model's accuracy improves significantly, demonstrating the potential of KD to improve sound-based sleep quality assessment.

講演PDFパスワード認証
論文PDFの閲覧にはログインが必要です。参加登録者の方は「参加者用ログイン」画面からログインしてください。あるいは論文PDF閲覧用のパスワードを以下にご入力ください。

パスワード