2020年第67回応用物理学会春季学術講演会

講演情報

一般セッション(口頭講演)

合同セッションN「インフォマティクス応用」 » 23.1 合同セッションN「インフォマティクス応用」

[15a-A205-1~10] 23.1 合同セッションN「インフォマティクス応用」

2020年3月15日(日) 09:30 〜 12:15 A205 (6-205)

桂 ゆかり(東大)、知京 豊裕(物材機構)

11:15 〜 11:30

[15a-A205-7] Search of magnetocaloric materials through machine-learning

Pedro Castro1,2、Kensei Terashima1、Takafumi D Yamamoto1、Suguru Iwasaki1、Ryo Matsumoto1,2、Shintaro Adachi1、Saito Yoshito1,2、Song Peng1,2、Hiroyuki Takeya1、Yoshihiko Takano1,2 (1.MANA, NIMS、2.Tsukuba Univ.)

キーワード:magnetocaloric effect, machine learning

Magnetocaloric effect is emerging as a potential substitute for conventional gas-cycle based refrigerators, due to its enviromental friendliness and effectiveness, being suitable for cooling from room temperature to liquefaction of gases. However, for exploiting such effect, materials that exhibits remarkable magnetic entropy change are needed.
In this talk, we show our current efforts into modeling the magnetocaloric effect of magnetic materials through use of machine learning, discussing also ongoing experimental validation of such method and the challenges of this data-driven approach.