資源・素材2020(仙台)

講演情報(2020年8月7日付 確定版)

企画講演

資源探査に関する研究の動向と大規模データプロセッシング

2020年9月10日(木) 09:00 〜 11:20 第1会場

司会:木崎彰久(秋田大学)、桑谷立(海洋研究開発機構)

11:00 〜 11:20

[3K0101-06-06] ニューラルクリギングと温度検層データを用いた日本全域地温分布モデリングと地熱資源量評価

○家木 優成1、小池 克明1 (1. 京都大学)

司会:桑谷立(海洋研究開発機構)

キーワード:温度検層データ、ディープニューラルネットワーク、ニューラルクリギング、対流型、伝導型

温室効果ガス排出量削減のために,日本では地熱を用いた発電の促進が重要な課題となっており,特に発電量の大きい超臨界発電が注目されている。しかしながら,長いリードタイムや開発コストとリスクの大きさなどがこの促進を阻害しているとともに,超臨界発電に適した場所の特定も困難な状況にある。これらの解決を図るには,日本列島全域で地下深部までの地温分布を明らかにすることが不可欠である。地温分布推定には温度検層データが用いられるが,データの深度範囲と地点数が限られており,従来の推定法では深部まで適切には推定できない。これを可能にするために,本研究ではDeep Neural Network(DNN)に注目し,バリオグラムによりDNNの学習規準に空間的相関構造を考慮したNeural Kriging(NK; Koike et al. 2001, Math. Geol.)の適用を行った。また,地温の温度変化には対流型と伝導型の2つのパターンがあるため,それを考慮したモデルも作成した。その結果,DNNとNKの比較により,内挿と外挿の両方でNKの推定精度が高いことを確認できた。さらに,対流型と伝導型を考慮したNKにより日本全域にわたり,臨界点(374℃, 22.1MPa以上)の分布の特徴を明らかにするとともに,地熱資源量分布の算定も試みた。

講演PDFファイルダウンロードパスワード認証

講演集に収録された講演PDFファイルのダウンロードにはパスワードが必要です。

現在有効なパスワードは、[資源・素材学会会員専用パスワード]です。
※[資源・素材学会会員専用パスワード]は【会員マイページ】にてご確認ください。(毎年1月に変更いたします。)

[資源・素材学会会員専用パスワード]を入力してください

パスワード