MMIJ 2024, Akita

Presentation information (2024/08/07 Ver.)

Poster presentation session

15:15-17:15 (Poster session) Earth & Resources

Wed. Sep 11, 2024 3:15 PM - 5:15 PM Room-poster 1 (Clair, 1F,University Hall)

3:15 PM - 5:15 PM

[P013A] Estimation of gasification area in Underground Coal Gasification system using machine learning based on acoustic emission and product gas compositions

○Taichi Sasaki1[Master’s course], Ken-ichi Itakura2, Akihiro Hamanaka3, Jun-ichi Kodama1, Gota Deguchi4, Youhei Kawamura1 (1. Hokkaido University, 2. Muroran Institute of Technology, 3. Kyushu University, 4. Underground Resources Innovation Network)

Keywords:Underground Coal Gasification, Hydrogen, Acoustic emission, Machine learning

石炭は日本国内に豊富に存在する資源であるが、近年の脱炭素化の流れにより国内の石炭利用量は年々減少している。そこで注目されているのが石炭地下ガス化(Underground Coal Gasification: UCG)技術である。UCGは地下の石炭を燃焼・ガス化させることで水素やメタンを得る技術である。この技術を用いることで地下に存在する石炭を採掘することなく、また二酸化炭素の排出を抑えながら未利用石炭資源を有効利用することができる。
現在のUCGシステムにおける課題の一つとして、地下での反応状態の観察が行えないためガス化反応の効率化が困難であることが挙げられる。過去にはAEセンサを用いた石炭の破壊位置特定や生成ガス成分から反応石炭量を求める研究がされてきたが、これら二つの要素を結びつけ反応領域を推定する仕組みは確立されていない。そこで本研究ではAEセンサからのデータや生成ガス成分の分析結果を教師データとし、これらすべての要素を考慮に入れた最適な反応領域の推定を機械学習によって行う。
本研究では、過去に行われたUCG模型実験の結果を機械学習によって解析し、反応領域の推定を行う人工知能を作成した。

講演PDFファイルダウンロードパスワード認証

講演集に収録された講演PDFファイルのダウンロードにはパスワードが必要です。

現在有効なパスワードは、[資源・素材学会会員専用パスワード]です。
※[資源・素材学会会員専用パスワード]は【会員マイページ】にてご確認ください。(毎年1月に変更いたします。)

[資源・素材学会会員専用パスワード]を入力してください

Password