Fission Fragment Mass Distributions of Np, Pu and Am Isotopes Utilizing Multi-Nucleon Transfer Reactions

Mark Vermeulen¹, Katsuhisa Nishio¹, Kentaro Hirose¹, Hiroyuki Makii¹, Riccardo Orlandi¹, Kazuaki Tsukada¹, Satoshi Chiba², Andrei Andreyev³
¹JAEA, ²TIT, ³Univ. of York

Fission fragment mass distributions (FFMDs) of ²³⁷,²³⁸,²³⁹ Np, ²³⁸,²³⁹,²⁴⁰ Pu and ²⁴¹,²⁴²,²⁴³ Am nuclei, and their dependence on excitation energy up to 70 MeV, have been measured at the JAEA-Tokai Tandem Accelerator Facility, employing multi-nucleon transfer (MNT) reactions using an ¹⁸O beam and ²³⁷Np target.

Keywords: Nuclear fission, multi-nucleon transfer reaction, fission fragment mass distribution, neptunium, plutonium, americium

1. Introduction

FFMD are interpreted in terms of symmetric and asymmetric modes which are linked to the shell structure of the CN and FFs. The current work looks at the excitation energy dependence of the FFMD of various actinide nuclei, with the aim to provide more information regarding the distribution of waste products following the transmutation of actinide waste in accelerator driven systems (ADS).

2. Method

The JAEA-Tokai Tandem accelerator facility was utilized for the current work, supplying an ¹⁸O beam with an energy of 162 MeV. This beam impinged on a target of ²³⁷Np, leading to many excited compound nuclei (CN; ²³⁷,²³⁸,²³⁹ Np, ²³⁸,²³⁹,²⁴⁰ Pu, ²⁴¹,²⁴²,²⁴³ Am), via MNT reactions, which then undergo fission. CN and their excitation energies were identified by detecting ejectiles with a silicon ΔE-E telescope [1,2]. Fission fragments were detected in coincidence with two multi-wire proportional counters (MWPCs), and FFs masses were determined by a kinematic consideration.

3. Results

Preliminary results show the transition from asymmetric fission to asymmetric fission as CN excitation energy increases. Figure 1 shows the case for ²⁴¹ Am. All the measured nuclei investigated in this experiment showed similar behavior. Aside from Np, Pu and Am isotopes, FFMD will also be shown for various Cm, Bk and Cf isotopes.

Present study is supported by “Development of prompt neutron measurement by surrogate reaction method and evaluation of neutron energy spectra” by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References