高速増殖炉の炉心溶融事故後冷却挙動の研究 (30)界面固化を伴う溶融ジェットからの微粒化物生成

Study on Quench Behavior at Core Disruptive Accident for Fast Breeder Reactor

(30) Fragmentation of a Melt Jet with Surface Solidification

*岩澤譲¹,阿部豊¹,金子暁子¹,金川哲也¹,齋藤慎平¹,坂場弘²,小山和也³,成合英樹¹ ¹筑波大学,²三菱重工業,³三菱 FBR システムズ

高速増殖炉における炉心溶融事故時には、冷却材中に射出された溶融燃料の微粒化挙動の把握が重要となる.本報では、溶融した低融点金属を水中に射出し、生成した微粒化の質量を計測した結果を報告する. キーワード: 高速増殖炉, 炉心溶融事故, 炉容器内終息,溶融ジェット,界面固化

1. 緒言

高速増殖炉における炉心溶融事故の炉容器内終息達成のため, 事故後冷却性の評価では,冷却材中にジェット状に射出された 溶融燃料の微粒化挙動の把握が必要となる.本報の目的は,溶 融ジェットの射出により生成した堆積物の質量を計測し,射出 条件による微粒化物生成の違いを明らかにすることである.

2. 実験

実機では、溶融燃料と冷却材の初期接触界面温度が溶融燃料 の融点以下となることが想定される.実験では、これの模擬を 目的に、低融点金属(融点 138 °C)と水を使用し、それらの初 期温度 T_i と T_c をそれぞれ設定した.侵入速度 v_{j0} は、射出ノ ズル先端と液面までの距離の調節により設定した.溶融ジェッ トの射出後に堆積物を回収し、形状の分類とその質量を計測し た.本研究では、初期接触界面温度^[1] T_i が低融点金属の融点を 超える条件を液液接触条件、下回る条件を界面固化条件とした.

3. 結果

回収した堆積物は, 主に Fig. 1 に示す(a) - (e)の形 状に分類できた. Fig. 2 に, 各形状の堆積物が全質量に占 める割合を示す. *T_i*が低下し(1)の液液接触条件から

(2)の界面固化条件となると、シート形状と複雑形状の 微粒化物の生成割合が増加した.両条件では、シート形状の微粒化物が全質量の半以上を占めた.(2)より、T_cを 低下させることで、界面固化の影響が大きくなる(3)で は、棒状の固化物が全質量の半分程度を占めた.今後は、 条件による生成割合の変化の計測し、可視化画像との対応も行い、微粒化物の生成挙動を詳細に検討する.

[1] H. K Fauske, Nuclear Science and Engineering, Vol.51 (1973), pp.95-101.

^{*}Yuzuru Iwasawa¹, Yutaka Abe¹, Akiko Kaneko¹, Tetsuya Kanagawa¹, Shimpei Saito¹, Hiroshi Sakaba², Kazuya Koyama³ and Hideki Nariai¹

¹University of Tsukuba, ²Mitsubishi Heavy Industries, Ltd., ³Mitubishi FBR Systems, Inc.

(c) sheet

 $\begin{array}{c} 3 \text{ mm} \\ \longleftrightarrow \\ \text{(b) filament} \end{array}$

(d) complicate

(e) cylinder

Fig. 1 Typical shapes of the fragments; $T_i = 150 \text{ °C}, T_c = 20 \text{ °C}, T_i = 120 \text{ °C}, v_{i0} = 3.23 \text{ m/s}.$

