Iterated Fission Probability で重みづけた

先行核群毎の遅発中性子割合の計算

Delayed neutron fraction repartition per precursor group weighted by Iterated Fission Probability

*名内 泰志 ¹

*電力中央研究所

IFP 法による遅発中性子割合計算コードを拡張し、先行核群毎の割合の評価を可能とした。STACY 炉に対して同割合を後続の子孫の世代毎に計算し、この割合と炉周期(文献値)より逆時間方程式で反応度を導出した。反応度導出値に関する Multi Generation effect は相対比で 1%弱にとどまった。

キーワード: Iterated fission probability、実効遅発中性子割合,先行核群、逆時間方程式

- **1. 緒言** モンテカルロ法で実効遅発中性子割合 β_{eff} を評価する手法として、十分な世代を経た後の子孫数、即ち Iterated Fission Probability (*IFP*) を用いる厳密法 1 と、次世代核分裂中性子数(*NNN*)等を用いる近似法 2 が知られる。当所では *NNN* を使って先行核群毎の実効割合 $\beta_{eff,ij}$ を近似し、逆時間方程式による反応度評価に試用している 3 。本研究では *IFP* 法による $\beta_{eff,ij}$ 計算法を整備し、*NNN* を用いる手法の誤差を評価した。
- **2. 手法** 実効増倍率計算 k_{eff} での核分裂源のサンプリング時に、遅発中性子と核分裂核種及び先行核群の情報を標識した。この標識を子孫となる中性子に対して保持させた。世代 L 後に先行核群毎に標識のついた中性子について 3 種類の k_{eff} の estimator を集計することで、子孫数を評価した。これを同じ世代の全中性子数に対する k_{eff} の estimator の和で除して世代毎の β^{L}_{ij} を得る。NNN 法であれば L=1 時の子孫数で評価を行う。本研究では MCNP-5.1.30 コード 4 の k_{eff} 計算に前期の機能を組み込んだ。遅発中性子数のサンプリング数の少なさを補うため、1 世代の中性子数は 400 万とし、標識を 50 世代にわたって付け、さらに乱数を変えた 8 つの計算を実施した。 $\beta_{eff,ij}$ は $3\times50\times8$ 個得られるが、これをもって平均と統計誤差の評価を行った。
- 3. 計算と結果 STACY 硝酸溶液炉心(RunNo R163)の液位反応度測定試験 5 を対象に、 $\beta^{(L)}_{ij}$ を計 算し、炉周期 T と先行核崩壊定数λ_{ii}を用い、逆時 間方程式で反応度 $\rho^{(L)} = \Sigma_{ij} \{ \beta^{(L)}_{ij} / (1 + \lambda_{ij} T) \}$ を求め た。世代数 L に対する $\rho^{(L)}$ の様子を図 1 に示す。L=3世代目には統計誤差内で収束している。L=10での 反応度評価値を基準にすると multi generation effect は $\rho^{(1)}$ / $\rho^{(10)}$ =99.2%で、両者間の差は統計誤 差以内となった。STACY R163 では NNN 法は有効 である。また、表1で¢単位での反応度の比較を 行った。¢単位での反応度では Multi Generation effect は見られず、STACY の実験値ともよく一致 した。これは先行核群毎のエネルギースペクトル による中性子増倍の違いがあまり大きくなく、 $\rho^{(1)}$ / $\rho^{(10)}$ が $\beta^{(1)}$ / $\beta^{(10)}$ にほぼ追随していることを 示唆しており、そのような炉心であれば NNN をつ かう、即ち $\beta^{1)}_{ij}$ を使う手法は有効と言える。今後 はこの観点で炉周期に関する感度解析等を行う。

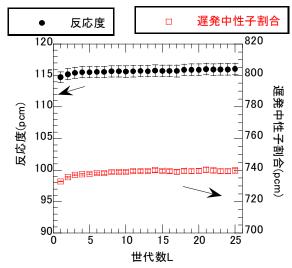


図 1 世代毎の $oldsymbol{eta}^{L}_{ij}$ を用いた逆時間方程式での $oldsymbol{
ho}^{L}$ 表 1 逆時間方程式による反応度の比較

		L=10	L=1	実験値
反応度	pcm	115.62	114.74	
	誤差	0.88	0.85	
反応度	¢	15.65	15.66	15.70
	誤差	0.12	0.12	0.56

参考文献 [1]JNST47,977(2010), [2]JNST42, 503,2005.[3]2005 年秋の大会 E71, [4]LA-UR-03-1987, [5]JAERI-Tech 99-084

^{*} Yasushi Nauchi1

¹Central Research Institute of Electric Power Industry