ガラス固化プロセスにおける白金族化合物の化学挙動 (1) Ru, Rh とガラス原料の高温合成実験

Investigation of platinum group compounds generated in the vitrification process (1) Synthetic experiments of ruthenium, rhodium, and glass frit

*永井崇之¹,小林秀和¹,岡本芳浩¹,塩飽秀啓¹,秋山大輔²,佐藤修彰² ¹原子力機構,²東北大多元研

ガラス固化体の製造において,ガラス相から析出した RuO₂等粒子に RhO₂が共存することから, Ru/(Ru+Rh) 比を変えてガラス原料と加熱合成した化合物を XRD や XAFS 測定等で評価した. **キーワード**:ガラス固化, ルテニウム, ロジウム, XRD, ラマン分光, XAFS 測定

1. 緒言 ガラス固化プロセスは、廃液とガラス原料をガラス溶融炉へ供給して溶融混合した後、定期的に 炉底部から固化体容器へ流下してガラス固化体を製造する.この際、廃液中の Ru, Rh, Pd 等は溶融ガラス相 と分離し、RuO₂や Rh-Pd 合金等の粒子を形成する.これら粒子は炉底部に堆積して溶融ガラスの流下操作を 阻害するほか、直接通電方式で加熱する場合、電流が堆積粒子に流れてガラス加熱効率が低下する.本研究 は、白金族化合物の化学挙動を解明するため、これまで Ru に着目し RuO₂生成メカニズム^[1]を参考に、Ru 化 合物の化学形態を調査してきた^[2].また、Ru-Rh 混合溶液とガラス原料から作製したガラス試料を評価し、 RuO₂と共存する Rh が RhO₂であることを確認した^[3]. RhO₂生成を酸素分圧で整理した報告例^[4]もあるが、今 回は RhO₂生成原因を検討するため、Ru/(Ru+Rh)比を変えてガラス原料との加熱合成実験を実施した.

2. 実験 硝酸 Ru 溶液や硝酸 Rh 溶液の乾固物, NaNO₃, 固化体用ガラ ス原料 PF-798 を混合し, Ar ガス通気状態で 700°C, 2 h 加熱した後, 得られた生成物を XRD 等により評価した.また,同様に乾固物等を混 合して大気雰囲気で 800°C, 2 h 加熱後, XAFS 測定等で評価した.

3. 結果 Ar ガス通気 700℃ 加熱の生成物は,図1の XRD 結果から Rhを含まない組成(a)は昇温中に合成された Na₂RuO₃等から Na がガラス 成分へ移行して RuO₂が生成し, Ru を含まない組成(e)は生成した NaRhO₂ が残留し, Ru-Rh 共存組成(b)~(d)は RuO₂ と NaRhO₂が混在した. 28.1° の RuO₂ピークを対象に, Ru/(Ru+Rh)比と RuO₂ピーク面積の関係は, 図 2 の組成(b) (Ru/(Ru+Rh)比 0.75) でピーク面積が高くなった. また, 大気雰囲気 800℃ 加熱の生成物を XAFS 測定した結果, Ru/(Ru+Rh)比
0.75 で Rh 原子価が 4 価に近付くことを確認した. 緒言で述べたガラス 試料中の RuO₂に RhO₂が存在した報告^[3]を考慮すれば, Ru/(Ru+Rh)比 が実廃液組成に近い条件で 4 価状態の Rh 化合物の生成が考えられる.
4. 結言 ガラス固化プロセスの廃液から RuO₂が生成する加熱環境で,

共存するRhの一部から4価状態のRh化合物が生成する可能性がある.

参考文献

H. Boucetta, et al., *Inorg. Chem.*, **51** (2012) 3478-3489.
 岡本,他,原子力学会 2016 年秋の大会, 1G14.

[2] 永井, 他, 原子力学会 2016 年秋の大会, 1G12. [4] T. Sugawara, et al., J. Nucl. Sci. Technol., **53** (2016) 380-390.

本報は、物質・デバイス領域共同研究拠点における共同研究による成果を含む.また、放射光 XAFS 測定は、 大型放射光施設 SPring-8 利用実験課題 2016A3504, KEK-PF 放射光共同利用実験課題 2015G063 にて実施した. *Takayuki Nagai¹, Hidekazu Kobayashi¹, Yoshihiro Okamoto¹, Hideaki Shiwaku¹, Daisuke Akiyama², Nobuaki Sato²

¹Japan Atomic Energy Agency, ²Inst. Multidisciplinary Research for Advanced Materials, Toboku Univ.