加速器駆動可搬型中性子源のターゲットおよび遮蔽設計

Target and shielding design of accelerator-driven transportable neutron source

祐亮¹, 松嶋 大輔¹, 小林 知洋², 池田 裕二郎², 林崎 規託³, 羽倉 尚人¹, 河原林 順¹, 大竹 淑恵² *串間

1東京都市大学,2理化学研究所,3東京工業大学

社会インフラ劣化が喫緊の課題となっている現在、橋梁等の大型コンクリート構造物の非破壊検査の新 たな技術開発が待たれている。そのニーズに応えるため理研では加速器駆動小型中性子源 RIKEN accelerator-driven compact neutron source(RANS)による実験結果をもとに、現場利用を最終目標とする可搬型 中性子源のプロトタイプ開発を開始した。可搬型中性子源のプロトタイプの設計の基本となる中性子発生 標的および周辺構造材の核特性及び遮蔽評価を行った。

キーワード:小型中性子源,加速器,モンテカルロ計算,Liターゲット

1. 緒言

本研究は、可搬型中性子源のプロトタイプを開発し、高速中性子を用いたバルクインフラ内部のイメー ジング技術開発を大目的としている。プロトタイプでは 2.49 MeV 陽子線を Li ターゲットに対して照射し、 ⁷Li(p,n)⁷Be 反応を用いることとした。計算を基に、中性子のスペクトル変化や減衰に加え、対象の有効厚 さ、施設全体の線量分布などの評価検討を実施し、今後工学

設計のベースを構築する。

2. 評価計算

用いた粒子輸送計算コードは PHITS.ver2.870 であり核デー タ(ENDEF70)を組み込んだ。2.49MeV の陽子線を直径 2cm、 厚さ 80µm の Li に打ち込み、Li 中心から 10cm 離れた位置に おける 0 度から 180 度まで 30 度おきに表面積が 4cm²の仮想 検出器を置いて中性子スペクトルの角度分布を計算した(図 $1)_{0}$

次に、モデル化したコンクリート体系を対象とし、中性子 ビーム入射形状の影響、コンクリート中の中性子スペクトル の変化、減衰、広がりなど、中性子源設計の基本特性を求め た。中性子源体系を直径 60cm、長さ 80cm のポリエチレ

ンの円筒で模擬し、直径 2m、厚さ 30cm のコンクリート

に中性子を打ち込んだ時の(図2上図参照)、コンクリートの表面から 10cm 毎の深さにおける中性子エネルギースペクトルを図2下図の様に 求めた。

3. 結果

図1より、発生中性子は前方向が強く最大エネルギーが800keV程度 である。 200keV 以下のエネルギー領域では角度の偏りは小さい。 また、 陽子ビームに対して 90 度方向へのフラックスが最小である。

厚さ 30cm のコンクリート中の透過中性子スペクトル を図2に示す。10cm毎に中性子フラックスの積算値は減 少していき、100keV 以上の高速成分は 30cm 厚のコンク リート透過後には 10⁻³程度となり透過イメージングにお ける対象厚さ上限を定量評価できた。その他、遮蔽体の 実行厚さに関する知見を得ることができた。

4. 結言

RANS2 に用いる予定の陽子線と Li によって発生する 中性子の角度分布とコンクリートへの透過を確認するこ とができた。今後この結果をもとに、実用化に向けた可 搬型中性子源の設計を進める。

参考文献

- T. Sato, et al, Particle and Heavy Ion Transport Code System PHITS, [1] Version 2.52, J. Nucl. Sci. Technol. 50:9, 913-923 (2013)
- [2] 核データ研究グループ 日本原子力研究開発機構 Plotting tool for ENDF (Evaluation Nuclear Date File)URL:http://wwwndc.jaea.go.jp/ENDF_Graph/(2017/01/18)

*Yusuke Kushima¹, Daisuke Matsushima¹, Tomohiro Kobayashi², Yujiro Ikeda², Noriyosu Hayashizaki³, Naoto Hagura¹, Jun Kawarabayashi1 and Yoshie Otake2

¹Tokyo City Univ., ².RIKEN, ³ Tokyo Institute of Technology

