ガラス固化体の高品質化・発生量低減のための白金族元素回収プロセスの開発 (22)チオジグリコールアミド系とアミン系抽出剤を用いた 白金族元素抽出

Development of Recovery Process of Platinum-group Metals from HLLW for Stable Production and Volume Reduction of Homogeneous Vitrified Object

(22) Extraction of Platinum Group Metals from Nitric Acid Solutions Using Thiodiglycolamides and

Tertiary Amines

*Cibula Michal¹, 稲葉 優介¹, 竹下 健二¹, 成田 弘一² ¹東京工業大学, ²産業技術総合研究所

Synergistic extraction of Pd, Rh and Ru from highly concentrated nitric acid solutions was investigated using mixed solvents of newly synthesized thiodiglycolamide (TDGA) and tertiary amine compounds.

Keywords: solvent extraction, synergistic effect, platinum group metals, thiodiglycolamide, tertiary amine

1. Introduction In order to improve the vitrification process, the decrease in the concentration of platinum group metals (PGM) in HLLW is imperative. For this purpose, we have been studying the extraction of PGM from HCl and HNO₃ solutions with mixed solvents of TDGA and amine-type extractants [1]. In this study, we investigated extraction of Pd, Rh and Ru from highly concentrated HNO₃ solutions with mixed solvents of newly synthesized N,N'-dimethyl-N,N'-ditolyl-thiodiglycolamide and N,N'-dibutyl-N,N'-ditolyl-thiodiglycolamide (MTTDGA and BTTDGA) and tertiary amine-type extractants: tri-n-octylamine and tris(N,N-di-2-ethylhexyl-ethylamide)amine (TOA and EHTAA).

2. Experiments TOA and EHTAA were used without further purification. TDGAs were synthesized. The extraction operation was carried out batchwise: the extractants diluted in toluene, Pd(II), Rh(III) and Ru(III) in HNO₃. Both of TDGA extracted about 100% Pd(II) without TOA or EHTAA in wide range of HNO₃ concentrations. In case of Rh(III), mixed solvents of TDGA and tertiary amines improved the extractability. In particular, a mixed solvent of TDGA and EHTAA extracted ~100% Rh(III), that means a synergistic effect for Rh(III) occurred. Regarding Ru(III), a significant synergistic effect was not observed. However, ~90% Ru(III) could be extracted from highly concentrated HNO₃ (8 M) using higher concentration of MTTDGA.

3. Conclusion Considering the experimental results, we proposed a mutual separation flow that extracts PGM in following order: $Pd \rightarrow Ru \rightarrow Rh$ (Fig. 1).

Acknowledgement This work was financially supported by "The R&D program for advanced nuclear power systems" organized by MEXT.

References

H. Narita, M. Tanaka and K. Takeshita, Japan Patent
2012-025994.; H. Narita, K. Morisaku and M. Tanaka, *Solvent Extraction and Ion Exchange*, 33, 1-10 (2015).

*Michal Cibula¹, Yusuke Inaba¹, Kenji Takeshita¹, Hirokazu Narita²

¹Tokyo Institute of Technology, ²National Institute of Advanced Industrial Science and Technology (AIST)

