高温ガス炉を用いた T 生産 Li 装荷ロッドの照射試験体及び試験法の検討 ~ Zr 層を考慮した試験体の評価 ~

Study on lithium rod test module and irradiation method of tritium production

using high temperature gas-cooled reactor

 \sim evaluation of test module with Zr layer \sim

*井田祐馬1、松浦秀明1、長住達1、古賀友稀1、岡本亮1、

片山一成2、大塚哲平3、後藤実4、中川繁昭4、石塚悦男4

¹九大院工、²九大総理工、³近大理工、⁴JAEA

高温ガス炉を用いて初期核融合炉用トリチウム(T)を生産する方法を検討している。これまでは Li 装荷試 験体の Al₂O₃層、LiAlO₂層、中空部の半径の最適化を検討してきた。今回は、T 流出量の減少を目的とし た Zr 層を Li 層の周りに追加して、試験体の検討及び評価を行った。 +0+空部

キーワード:トリチウム、高温ガス炉、Li装荷試験体、ジルコニウム

1. 緒言

DT反応を利用した核融合原型炉及び実証炉に必要な初期装荷用Tの供給方法として、高温ガス炉を用いたT生産法が提案されている[1]。本方法は、高温ガス炉内の燃料ブロック中の可燃性毒物孔(BP 孔)にLi化合物を含んだロッドを装荷し、 $6Li+n \rightarrow T+4$ He反応によりTを生産するものである。これまでGTHTR300[2]を想定してT生産LiロッドでのT生産及び閉じ込め性能を評価してきた[3]。次のステップとして、これまでの評価値の妥当性を、照射試験により確認する必要がある。これまで、Zr層を含まない体系を想定して、試験方法を検討し、Li装荷試験体を提示している。今回さらにT流出量の減少を目的として、Zr層をLiAlO2層の周りに加え、試験方法及びLi

2. 解析方法及び計算モデル

照射試験炉として HTTR[4]を想定し、核計算で T 生産量を計算し、 拡散計算により T 流出量を評価した。核計算には MVP[5]を使用し、 核データは JENDL-4.0 を使用した。周りを Zr 層で覆った中空円筒 状の LiAlO₂を Al₂O₃で被覆し、さらに炉内への T 流出を防ぐために Al₂O₃製の容器に収納したものを Li 装荷試験体とし図 1 に示す。中 空部はヘリウムで満たしており、内側を中心中空部、外側を外縁中 空部としている。Zr 層及び LiAlO₂装荷量は一定とした。上下は、厚 さ 25 mm の Al₂O₃で被覆している。Zr 層の厚さの違いが T 流出量 及び中心中空部の圧力に及ぼす影響を調べた。照射試料の直径は GTHTR300 の BP 孔に装荷可能な大きさ 44mm に固定し、容器を含 めた直径は 60mm とした。T の拡散は、実験で得られた Al₂O₃[6]、 Zr 層[7][8]の拡散係数及び溶解度定数、を用いて評価した。なお、Li 装荷試験体の温度を 800 K、照射日数 30 日、最大熱中性子束 4.0× 10¹³/cm²/s[9]とした。

100 mm

50mm

LiAlO2層 Zr層

被覆管

図 3 Zr 層を含んだ時の Al₂O₃層の厚みに対する T 流出量と中心中空部の圧力

3. 結果

図 2 及び 3 に Al₂O₃層の厚みに対する T 流出量と中心中空部の圧力の関係を Zr 層を含む場合、及び含 まない場合について示す。図 2 より、Al₂O₃層が厚くなると T 流出量は減少するが、さらに厚みが増すと 中空部の圧力上昇により T 流出量もさらに増大することがわかる。図 3 では Al₂O₃層が厚くなるに従い流 出量が減少し、圧力はほぼ一定ののち Al₂O₃層の厚みが 1mm 付近で急減する。圧力が一定となるのは、 Al₂O₃層の厚みの増加に伴い、LiAlO₂層が内側に移動し中性子束が減り、さらに LiAlO₂層の厚みが増加す ることによる自己遮蔽効果により T 生成量が徐々に減少するためである。Al₂O₃層の厚み 1mm 付近では、 T 生産量が Zr 層の吸蔵可能量を下回るため圧力が急減する。Zr 層を含めたことによりトリチウム流出量 が約 1/5 になり、圧力がほぼ一定のもとでの Al₂O₃層厚みの影響についても評価が容易となる。発表では、 これら評価値に基づいた Li 装荷試験体の設

計例を示し議論を行う。

Yuma Ida¹,Hideaki Matsuura¹, Satoru Nagasumi¹,Yuki Koga¹,Ryou Okamoto¹ Kazunari Katayama²,Teppei Otsuka³,Minoru Goto⁴,Shigeaki Nakagawa⁴, Etsuo Ishitsuka⁴ Kyushu Univ.¹ Kyushu Univ.² Kindai Univ.³ JAEA⁴

- [1] H. Matsuura, et al., Nucl. Eng. Des., **243** (2012) 95.
- [2] T. Nakata, et al., JAERI-Tech, **087** (2002).
- [3] H. Nakaya, et al., Nucl. Eng. Des., 292 (2015) 277.
- [4] S.Saito, et al., JAERI,1332(1994)
- [5] Y. Nagaya, et al., JAERI, **1348** (2005).
- [6] K. Katayama, et al., Fusion Sci. Technol., 68 (2015) 62.
- [7] 染野壇、日本金属学会誌、24(1960) 249.
- [8] J.J Kearns : J.Nucl.Mat., 22(1967) 292.
- [9] D.Shibata, et al., JAERI-Tech, **097**(2002).