1D09

蛍石型酸化物の熱物性評価

 UO_2 や PuO_2 などの蛍石構造を有する 6 種類の酸化物について、熱物性及び機械物性について比較・評価し、比熱及び熱伝導率を記述する式について検討した。

キーワード: 蛍石酸化物,アクチナイド酸化物,熱物性

1. 緒言

酸化物燃料の基礎物性について機構論的に記述することを目的に、蛍石構造を有する CeO_2 、 ThO_2 、 UO_2 、 NpO_2 、 PuO_2 、 AmO_2 の 6 種類の酸化物について基礎特性を比較評価した。さらに、基礎データ間の関連性について検討し、比熱及び熱伝導率について評価を行った。

2. 実験データベース

実験データとして、酸素ポテンシャル、格子定数、ヤング率、せん断率、ポアッソン比、熱膨張率、比熱、熱伝導率及び融点についてレビューし、比較評価した。6 種類の化合物のうち、 $U0_2$ はハイパーストイキオメトリの領域に、 ThO_2 を除く残りの 4 種類は、ハイポストイキオメトリ組成領域に広がっている。 ThO_2 は定比組成で安定であり、広範囲の酸素ポテンシャルで安定に存在し、他の酸化物は、 $NpO_2 < UO_2 < PuO_2 < CeO_2 < AmO_2$ の順で酸素ポテンシャルが高くなる傾向である。融点と熱膨張率の関係などの他の特性においては、明らかな傾向は観察できなかった。

3.熱物性の評価

図1に比熱の温度依存性[1]を示す。機械物性及び熱膨張係数を用いると、デバイ温度とグリュナイゼン係数を評価することができるため、比熱(Cp)を定積比熱(Cv)と熱膨張の寄与(Cd)の和として得ることができる。図1中に例としてCeO2の計算結果を示すが、実験データと良い一致を示している。

これらの化合物は、同じ結晶構造で、熱膨張も大きな違いがないことから Cp=Cv+Cd は、ほぼ同じ値となることが期待される。 ThO_2 の比熱は CeO_2 とほぼ同じ値を示すが、他のアクチニド酸化物は 10-30 J/mol K 高く、 PuO_2 が最も高い値である。 これらの酸化物における実験データと計算で得られた結果の差は、5f 電子の寄与であるショットキー項として評価された。熱伝導率は、7 + 1 - 1 - 1 - 1 にごで評価した。 CeO_2 及び ThO_2 は1 - 1 - 1 - 1 にごで評価した。 CeO_2 及び 1 - 1 - 1 に必要とよく一致したが、1 - 1 - 1 に必要となることを確認した。

参考文献

[1] Konings, et al., J. of Phy. Chem. Ref. Data, 43, 013101(2014)

[2] Slack, Solid State Physics, 34(1979)1-71

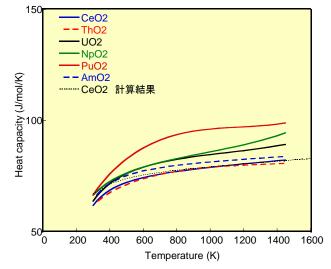


図1 蛍石型酸化物の比熱の比較

^{*}Masato Kato¹, Taku Matsumoto¹, Hiroki Nakamura¹ and Masahiko Machida¹

¹Japan Atomic Energy Agency