2N09 2018 Fall Meeting

Status of R&D of advanced neutron multiplier in ITER-BA activity (28) Production and characterization of binary-sized Be₁₂V pebbles *Petr Kurinskiy¹, Jae-Hwan Kim¹, Yoshiaki Akatsu¹, Masaru Nakamichi¹ Fusion Energy Research & Development Directorate, Rokkasho Fusion Institute, QST

Among other beryllides, vanadium beryllide $Be_{12}V$ is considered to be one of the most perspective materials for the use as a neutron multiplier of the breeding blanket. $Be_{12}V$ pebbles having the diameters of 0.425-0.60 and 2.36-2.80 mm were fabricated using rotating electrode method (REM) and their fusion-relevant properties were studied using different techniques.

Keywords: binary pebble packing, vanadium beryllide, granulation, yield

1. Introduction

Single-phase Be₁₂V pebbles were successfully fabricated using REM using the plasma-sintered beryllide electrodes in high-purity helium atmosphere. Besides of investigation of microstructure, shape characteristics of produced pebbles and the granulation yield values, several tests on study of pebble bed packing density have been performed.

2. Summary

2-1. Experimental

Be₁₂V pebbles were fabricated by centrifugal melting of Be-7.7at.% V rod (electrode) in helium-filled chamber of REM apparatus using the plasma-sintered beryllide electrodes. Variable electrode rotation speeds allowed the fabrication of vanadium beryllide pebbles in the size range of 0.4-3 mm. Different analytical tools and techniques were used by the investigation of microstructural and yield properties of produced samples.

2-2. Pebble Bed Packing Density Experiments

The packing densities of produced single-sized $Be_{12}V$ pebbles (2.36-2.80 mm) and binary-sized pebbles (with the addition of 0.425-0.60 mm pebble fraction) in constraint and non-constraint states were investigated by filling of the cylindrical cavities having diameters of 30mm. Figures 1 and 2 represent pebble bed packing experiments using single- and binary-sized $Be_{12}V$ pebbles produced at QST. Detailed description of obtained results will be presented and discussed.

Fig. 1 Single-sized $Be_{12}V$ pebbles in a cylindrical container

Fig. 2 Pebble bed packing density experiment using binary-sized pebbles