Examination of medical radionuclides production using an electron linear accelerator

(3) Perspectives on 100Mo enrichment in photonuclear production of 99Mo

Jaewoong Jang, Katsuyoshi Tatenuma, and Mitsuru Uesaka

1Univ. of Tokyo, 2Kaken Inc.

Abstract

Although the need of 100Mo enrichment in realizing photonuclear production of 99Mo has been widely recognized, its rationales other than the sheer increase in the abundance of 100Mo have not been explored in depth. Here we examine the scientific implications of 100Mo enrichment from physical and chemical perspectives.

Keywords: 99Mo/99mTc, 100Mo, isotopic enrichment, nuclear medicine, electron linear accelerator

1. Introduction

Oftentimes, the use of a Mo target enriched to $>90\%$ in 100Mo is considered as a precondition for realizing mass production of 99Mo via the photonuclear reaction 100Mo$(\gamma,\nu)^{99m}$Mo. Such enriched Mo, however, is as costly as USD 700–1,000 per gram, and therefore evaluating its necessity is crucial. This research is an attempt to justify the use of a 100Mo-enriched Mo target through understanding its scientific implications.

2. Perspectives on 100Mo enrichment

2.1. Physical aspect: 99Mo yield

Writing the macroscopic cross section for 100Mo$(\gamma,\nu)^{99m}$Mo in terms of its component terms, we express the activity or yield of photonuclear-produced 99Mo as a function of both the irradiation time t_{irr} and the mass fraction of 100Mo, ω_{irr} [1]:

$$A_p(t_{irr}, \omega_{irr}) = [1 - \exp(-\lambda_p t_{irr})] V_{tar} I_b \left(\frac{\omega_{irr} \rho_{tar}}{M_{100}} N_A \right) \int_{E_{\gamma,\max}}^{E_{\gamma,\min}} \Phi_{MC}(E_{\gamma}) \sigma_{irr}(E_{\gamma}) dE_{\gamma},$$

where λ_p is the decay constant of 99Mo, V_{tar} is the volume of a Mo target, I_b is the electron beam current, ρ_{tar} is the mass density of the Mo target, M_{100} is the molar mass of 100Mo, N_A is the Avogadro constant, E_{γ} is the energy of incident bremsstrahlung, $\Phi_{MC}(E_{\gamma})$ is the bremsstrahlung fluence obtained from a Monte Carlo simulation platform, and $\sigma_{irr}(E_{\gamma})$ is the microscopic cross section.

Table 1 shows the 99Mo yield obtained from Eq. (1) with the following conditions: (1) 35-MeV electron beams shone onto a 1-mm thick tungsten converter for $t_{irr} = 72$ h, (2) $V_{tar} = 0.495$ cm3, (3) $I_b = 260$ mA, (4) $\omega_{irr} = 0.097$ to 0.950, (5) $\Phi_{MC}(E_{\gamma})$ obtained from PHTS, and (6) $\sigma_{irr}(E_{\gamma})$ contained in TENDL-2009. Also shown in the table is the number of electron (e^{-}) linacs to supply one million 99mTc annual procedures.

<table>
<thead>
<tr>
<th>ω_{irr}</th>
<th>A_p (GBq)</th>
<th>Number of e^{-} linacs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.097</td>
<td>50.41</td>
<td>112</td>
</tr>
<tr>
<td>0.200</td>
<td>103.5</td>
<td>55</td>
</tr>
<tr>
<td>0.400</td>
<td>206.9</td>
<td>28</td>
</tr>
<tr>
<td>0.600</td>
<td>310.4</td>
<td>19</td>
</tr>
<tr>
<td>0.800</td>
<td>413.9</td>
<td>14</td>
</tr>
<tr>
<td>0.950</td>
<td>491.5</td>
<td>12</td>
</tr>
</tbody>
</table>

2.2. Chemical aspect: 99Mo specific activity

Compared with fission-produced 99Mo, photonuclear-produced 99Mo inevitably exhibits low specific activity (LSA), discouraging the use of alumina for extracting $[^{99m}\text{Tc}]\text{TcO}_4^-$ from $[^{99}\text{Mo}]\text{MoO}_2^{+}$. This LSA further decreases with lower ω_{irr}, in which case some 99mTc generators proposed as an alternative to the alumina generator may not function effectively.

One solution is to use a 99mTc-selective adsorbent: activated carbon, for example, selectively retains $[^{99m}\text{Tc}]\text{TcO}_4^-$ when given $[^{99}\text{Mo}]\text{MoO}_2^{+}$ and $[^{99m}\text{Tc}]\text{TcO}_4^-$ solutions [2], and therefore allows $[^{99m}\text{Tc}]\text{TcO}_4^-$ to be concentrated to a sufficiently large extent even when the specific activity of given 99Mo is extremely low.

3. Conclusion

Considering the low yield of 99Mo at low ω_{irr}, using 100Mo-enriched Mo targets is deemed to be necessary. The specific activity of 99Mo, on the other hand, will no longer be a factor that encourages 100Mo enrichment, if 99mTc-selective 99Tc generators become widely available. The necessity of 100Mo enrichment will then be judged based solely on the yield of 99Mo, not on its specific activity, in which case the roles of t_{irr} and I_b will become ever more important.

References
