2018年春の年会

Gd-Cd 金属間化合物の熱力学的安定性

Thermodynamic stability of Gd-Cd intermetallic compounds

*明石 信,柴田 裕樹,佐藤 匠,林 博和

原子力機構

Gd-Cd 系の 6 種類の金属間化合物 GdCd、GdCd₂、GdCd₃、GdCd_{45/11}、GdCd_{58/13} 及び GdCd₆の生成自由エネ ルギーを電気化学的手法で測定し、その熱力学的安定性について評価した。

キーワード:乾式再処理、Cd 蒸留分離、Gd-Cd 金属間化合物、生成自由エネルギー、電気化学測定

1. 緒言

高速炉用金属燃料やマイナーアクチノイド核変換用窒化物燃料の乾式再処理法では、溶融塩電解によって 超ウラン元素(TRU)を液体カドミウム(Cd)陰極中へ分離回収することが検討されている。溶融塩電解で得られ る TRU を含む Cd 合金からの Cd の蒸留分離を伴う金属や窒化物への再転換工程においては、中間生成物と

TRU-Cd 金属間化合物の安定性を理解するため、模擬物質としてガド リニウム(Gd)を用い、溶融塩を溶媒として用いた電気化学的手法によ り Gd-Cd 金属間化合物の生成自由エネルギー($\Delta G_{\rm f}^0$)を測定し、その熱 力学的安定性について評価した。

してTRU-Cd 金属間化合物の生成を考慮する必要がある。本研究では、

2. 実験方法

Gd(III)/Gd(0)の平衡電位測定のための LiCl-KCl-GdCl₃(3.13×10⁻¹ mol%)のクロノポテンショメトリー及び LiCl-KCl-GdCl₃(3.13×10⁻¹ mol%)-CdCl₂(5.78×10⁻² mol%)の定電位電解による Gd と Cd のタング ステン電極への同時析出後の電位の経時変化測定を 673~873K で行った[1]。

3. 結果と考察

定電位電解後の電位の経時変化測定では、二種類の金属間化合物の 化学平衡に起因する 6 つのプラトーを観測した (図 1)。これらは GdCd、GdCd₂、GdCd₃、GdCd_{45/11}、GdCd_{58/13}及びGdCd₆の化学平衡に 起因しており、プラトー電位と Gd(III)/Gd(0)の平衡電位との差 ($\Delta E_1 \sim \Delta E_6$)から各 Gd-Cd 金属間化合物の ΔG_1^0 を導出した[1]。得られた ΔG_1^0 は、Cd 蒸気圧測定結果からの導出値[2]及びCALPHAD 法による 解析結果[3]と一部を除いてよく一致し (図 2)、本測定方法の有効性を 示している。また、各 Gd-Cd 金属間化合物の原子 1 モル当たりのギブ ズ自由エネルギー(G)は、他のランタノイド(Ln)-Cd 系での傾向と同じ く GdCd₂ で最小である。この結果は、Ln-Cd 系と同様の挙動を示す TRU-Cd 系において、TRUCd₂が最も安定であることを示唆している。

図 1. 溶融 LiCl-KCl-GdCl₃-CdCl₂の 定電位電解(-2.2 V vs Ag/AgCl, 60 s) 後の平衡電位の経時変化(673K)

Reichmann et al., J. Alloy. Compd., 610 (2014) 676-683. [3] M. Kurata et al., J. Phase Equilib., 22 (3) (2001) 232-240.

*Shin Akashi, Hiroki Shibata, Takumi Sato and Hirokazu Hayashi

Japan Atomic Energy Agency.