Investigation on distribution of radioactive substances in Fukushima

(9) Analysis of temporal changes in ambient dose equivalent rates in forests over 6 years following the FDNPP accident

*Alex Malins¹, Naohiro Imamura², Tadafumi Niizato¹, Minsik Kim¹, Kazuyuki Sakuma¹, Yoshiki Shinomiya², Satoru Miura², Masahiko Machida¹

¹Japan Atomic Energy Agency (JAEA), ²Forestry and Forest Products Research Institute (FFPRI)

Abstract

We analyzed changes in ambient dose equivalent rates ($\dot{H}^*(10)$) between 2011 and 2017 in forests in Fukushima Prefecture. PHITS was used to calculate the effect of re-distribution of ¹³⁴Cs and ¹³⁷Cs over time within forests on $\dot{H}^*(10)$. Transfer of radiocesium from the crowns of evergreen coniferous trees to the forest floor appeared to cause slower declines in $\dot{H}^*(10)$ at 1 m height initially after March 2011 than expected by the rate of radiocesium decay.

Keywords: forest, environment, ambient dose equivalent, radiocesium, ¹³⁴Cs, ¹³⁷Cs, FDNPP accident, PHITS, Monte Carlo, simulation

1. Introduction

Ambient dose equivalent rates ($\dot{H}^*(10)$) have been observed to decrease more slowly in forests than in other areas since the 2011 Fukushima Daiichi Nuclear Power Plant (FDNPP) accident [1]. Moreover, between 2011 and 2013, $\dot{H}^*(10)$ at 1 m above the ground in some forests decreased slower than the rate of radioactive decay of the radiocesium fallout [2]. The reasons for this behavior were examined by using radiation transport simulations.

2. Methods

Forests in Fukushima Prefecture monitored by FFPRI [3] were modelled with the PHITS code [4]. We calculated the contributions to $\dot{H}^*(10)$ at 1 m above the ground from ¹³⁴Cs and ¹³⁷Cs in the canopy, trunks, organic layer, and soil layers separately. The results were compared to $\dot{H}^*(10)$ measurements from hand-held survey meters.

3. Results

Yearly fluctuations in the measured ¹³⁴Cs and ¹³⁷Cs inventories in forests meant the inventories had to be normalized to a common baseline to understand the effects of re-distribution of ¹³⁴Cs and ¹³⁷Cs within forests on $\dot{H}^*(10)$. The results show that changes in the distribution of ¹³⁴Cs and ¹³⁷Cs on the centimeter scale within the organic layer and soil affect the temporal trends of $\dot{H}^*(10)$ in forests.

4. Conclusions

The slower decreases in $\dot{H}^{*}(10)$ in forests compared to other land uses was a consequence of the high retention of ¹³⁴Cs and ¹³⁷Cs by forests, and the tendency of ¹³⁴Cs and ¹³⁷Cs to remain near the top surface of forest soil. Radiocesium transfer from the crowns of evergreen coniferous trees to the forest floor explained a slower rate of decline in $\dot{H}^{*}(10)$ between 2011 and 2013 than expected by the rate of radioactive decay.

References

- [1] M. Andoh et al. 2018. J. Environ. Radioact. 192, 385-398. DOI:10.1016/j.jenvrad.2018.07.009
- [2] 安田幸生 2017. 水利科学 61(5), 102-130. DOI:10.20820/suirikagaku.61.5_102
- [3] Imamura et al. 2017. Sci. Rep. 7, 8179. DOI:10.1038/s41598-017-08261-x
- [4] T. Sato et al. 2018. J. Nucl. Sci. Technol. 55(6), 684-690. DOI:10.1080/00223131.2017.1419890