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1. Introduction 
Bayesian statistical methods use Bayes’ theorem to compute or update probabilities after obtaining new data. The 

methods are widely used in nuclear probabilistic risk assessment for updating, for example, failure probabilities of 
system or components.  

Bayesian methods are also powerful to build predictive models. If there is an unknown model ℳ with a set of 
input variables 𝐱𝐱, we need to find the best set of parameters 𝛉𝛉, which map the input variables 𝐱𝐱 to output results 𝐲𝐲. 
The model can be written as: ℳ:𝐲𝐲 = 𝑓𝑓(𝛉𝛉, 𝐱𝐱). The predictive Bayesian model aims to find an appropriate model ℳ� , 
which fits best to the observed data 𝒟𝒟. When the form of the model is clear, we compute the Maximum a Posteriori 
Estimation (MAP) of all parameters (𝛉𝛉), and this process is known as the Bayesian parametric approach. When the 
form of the model is unclear, we need to find a best-fitted model for the data, which is based on a prior distribution of 
all possible models 𝑝𝑝(ℳ). If the prior of unrestricted shapes is constructed on the space of functions, this process is 
known as the Bayesian nonparametric approach [1].  

Bayesian predictive models are useful in some traditional nuclear research fields such as nuclear reactor severe 
accident. Even though most models in severe accident simulation are deterministic and physical/chemical-rule-based, 
statistical models can still help to reduce modeling complexity and give us insights from a probabilistic perspective. 
At JAEA, we applied Bayesian approaches to severe accident source term simulation, including efforts on uncertainty 
and sensitivity analyses, optimization analysis and prediction of chemical forms of fission products (FP). The key 
step is that we build statistical surrogate models to assist numerical simulations, which are generally performed using 
mechanistic codes, for example, MELCOR [2] and THALES2/KICHE [3], etc. The scientific simulation of source 
terms reveals the consequence of a severe accident, and Bayesian statistics provides supports by creating more 
simplified predictive models.  
2. Bayesian Statistics and Surrogate Model 

The best model fitting the available database 𝒟𝒟 is the one which maximizes the posterior distribution 𝑝𝑝(ℳ|𝒟𝒟), 
and the computation of the posterior distribution can be written in the form of Bayes’ rule [4]. 
 𝑝𝑝(ℳ|𝒟𝒟) ∝ p(𝒟𝒟|ℳ)𝑝𝑝(ℳ) = ∫𝑝𝑝(𝒟𝒟|𝛉𝛉)𝑝𝑝(𝛉𝛉|ℳ)𝑝𝑝(ℳ)𝑑𝑑𝛉𝛉  (1) 

By choosing an appropriate form of the prior distribution of possible models (may be an infinite number of 
models) and a likelihood function, an optimal model can always be found. Equation (1) explains the Bayes’ rule from 
the perspective of models (instead of parameters), and all parameters 𝛉𝛉 of each model are integrated out for the 
model selection process. We use this method to find surrogate models (or reduced order models) for mechanistic 
severe accident codes.  

Figure 1 illustrates the process of how to train and validate a statistical surrogate model. A surrogate model is 
equivalent to a mechanistic model regarding to the mapping between inputs and outputs. The main difference 
between two models is that a surrogate model is statistical and there is no physical/chemical rule inside. The 
advantage allows us to build a much simpler model and such a model is generally fast-running. At first, we perform 
multiple computation of the mechanistic modes based on random sampled inputs (A). The according input/output 
database is used for training a surrogate model, with the aid of Bayesian methods. The correctness of the surrogate 
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model can be validated by comparing with the original code against new inputs. 

 
Figure 1 Training of a surrogate model using Bayesian approaches 

3. Application of Bayesian Statistics to Severe Accident Source Term at JAEA 
At JAEA, we apply Bayesian approaches to source term analysis. Source term is evaluated using integrated codes 

such as MELCOR and THALES2/KICHE. Execution of such codes is time-consuming, and because a model of a 
whole nuclear power plant includes too many sub-models, the relationship between inputs (plant parameters) and 
outputs (source term) is extremely unclear. Bayesian approaches help us optimize a statistical model to predict the 
outputs and then avoid direct execution of the severe accident codes. As the previous work, we introduce three fields 
of application in Table 1. 

(1) Uncertainty and sensitivity analyses [5]: a Bayesian nonparametric method (Dirichlet process [6]) is used for 
training a surrogate model to predict the simulation results of MELCOR and also to plot the probability 
density function of uncertainty analysis results. 

(2) Optimization analysis [7]: another Bayesian nonparametric method (Gaussian process [8]) is used for 
predicting the probable optimum for the timing of containment venting.  

(3) Prediction of FP chemical forms [9]: to simplify the models in severe accident codes, we applied both 
Bayesian and non-Bayesian methods to train surrogate models of VICTORIA [10] and CHEMKEq [11]. The 
statistical models are integrated into severe accident code, THELAS2/KICHE. 

To perform the Bayesian analysis, there are open-sourced libraries for programming languages such as R 
(DPpackage for Dirichlet process) and Python (scikit-learn for most of Bayesian approaches including Gaussian 
process, Dirichlet process, etc.). 

Table 1 Previous efforts at JAEA relating to Bayesian analysis 

 Research Topic Statistical Algorithms Mechanistic Codes Usage 

1 
Source term uncertainty and 
sensitivity analyses  

Dirichlet process  
(Bayesian nonparametric) 

MELCOR (SNL) 
Surrogate model, 
Probability density 
estimation 

2 
Optimization of severe accident 
consequence-mitigation measures  

Gaussian process  
(Bayesian nonparametric) 

THALES2/KICHE 
(JAEA) 

Surrogate model, 
Global optimization 

3 Prediction of chemical forms of FP 

K-nearest-neighbors 
regression (nonparametric) 
Dirichlet process 
(Bayesian nonparametric) 

VICTORIA (SNL) 
CHEMKEq (JAEA) 

Surrogate model 

3-1. Example: source term uncertainty and sensitivity analyses 
MELCOR is widely used for source term analysis, but it is still necessary to estimate the uncertainties during 

simulation, and when try to reduce the uncertainties, it is also required to estimate the sensitivity of input parameters. 
Random sampling is an effective way to observe the parametric uncertainties in simulation, and it usually needs only 
hundreds of code executions to generate a stable probability density function (according to Wilks’ formula). The 
sensitivity analysis (e.g. Sobol’ global sensitivity index), however, needs a great number of code executions to reach 
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reasonable results, because the sensitivity of a parameter will be affected by the setting of other parameters. It is 
laborious to run MELCOR directly for thousands of times. Instead, we train a surrogate model, run the surrogate with 
new inputs for numerous times, and evaluate the global sensitivity of all uncertain inputs. The detailed process is 
shown in Figure 2. After a raw screening of parameters, we use random sampling (Monte-Carlo or LHS) to generate 
inputs for MELCOR simulation. A probability density function of source term can be concluded based on the 
simulation data. Then, a surrogate model is trained based on the database. If the predictability of the surrogate model 
is not good enough, we execute MELCOR more until the prediction shows agreement with the real simulation. At last, 
we run the surrogate model to obtain the quantitative sensitivity measure of all uncertain inputs from the viewpoint of 
uncertainty reduction. Figure 2 shows the example results of (a) the predictability of a surrogate model and (b) global 
sensitivity analysis using Sobol’ index. Evaluated via the surrogate model, the probability density function predicts 
the most probable released amount of CsI to the environment, which agrees with the MELCOR simulation result (the 
red dot). By iteratively running the surrogate model, as an example, all three uncertain input parameters can be 
ranked according to their contribution to the source term uncertainties. 

 
Figure 2 The process uncertainty and sensitivity analyses of severe accident source term 

 
Figure 3 Sensitivity analysis results: (a) the validation of surrogate model by comparing with MELCOR simulation 

(b) global sensitivity measure of parameters A, B and C 
4. Conclusions 
  We are applying machine learning, especially Bayesian approaches, to severe accident analysis. The predictive 
Bayesian models greatly saved computational costs, and Bayesian approaches also show the potential to other 
on-going researches at JAEA, for example, simulation-based risk assessment. 
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