Production cross sections of dysprosium radioisotopes in deuteron-induced reactions on natural terbium up to 24 MeV

*Ichinkhorloo Dagvadorj¹, Masayuki Aikawa^{1,2}, Tsoodol Zolbadral²,

Yukiko Komori³ and Hiromitsu Haba³

¹Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

²Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo 060-8638, Japan

³Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198, Japan

Activation cross sections of deuteron-induced reactions on natural terbium up to 24 MeV were measured. In this paper, the production cross sections of ^{157,159}Dy were determined and compared with the experimental data studied earlier and the TENDL-2017 data.

Keywords: Dysprosium radioisotopes, Deuteron irradiation, Terbium target, Excitation function, Cross section

1. Introduction

The radioisotopes ¹⁵⁷Dy ($T_{1/2} = 8.14$ h) and ¹⁵⁹Dy ($T_{1/2} = 144.4$ d) can be used in the nuclear medicine [1,2]. The production of the dysprosium radionuclides is worthy to study. They can be produced by charged-particle-induced reactions on the mono isotopic element ¹⁵⁹Tb. We focused on deuteron-induced reactions on ¹⁵⁹Tb.

2. Experimental

In this experiment, a 24-MeV deuteron beam accelerated at the RIKEN AVF cyclotron was used. The stacked foil technique, the activation method and the high resolution γ -ray spectrometry were used to determine activation cross sections of the ¹⁵⁹Tb(d,x)^{157,159}Dy reactions.

3. Result

Production cross sections of ¹⁵⁹Dy were determined as shown in Fig. 1 in comparison with the experimental data published earlier [3,4] and the TENDL-2017 data [5]. Our experimental data have a peak at around 14 MeV, which are the same as other experimental data while the amplitudes are largely different. The TENDL-2017 data slightly deviate from ours.

We performed an experiment to obtain cross sections of the

4. Conclusion

Fig. 1. Excitation function of the ${}^{159}\text{Tb}(d,2n){}^{159}\text{Dy}$ reaction

 159 Tb(d,x) 157,159 Dy reactions, which can contribute to find the best route to produce the medical radioisotopes. The cross sections could be determined and found to be different from the previous experimental data.

References

- G. Subramanian et al., J. Nucl. Med. 12 (1971) 558-561.
 D.V. Rao and G.F. Govelitz, Med. Phys. 4 (1977) 109-114.
 M.D. Tran et al., C. R. Acad. Sci. Ser. B 266 (1968) 100-102.
- [4] F. Tarkanyi et al., Nucl. Instrum. Methods Phys. Res. Sect. B 316 (2013) 183-191.
- [5] A.J. Koning et al., Nucl. Data Sheets 155 (2019) 1-55.