高レベル濃縮廃液の沸騰乾固事故の研究 (4) 熱収支式の数値解および気相移行成分の放出速度変化の把握

Study on the boiling and drying accident of HLLW

(4)Numerical solution of the heat-balance equation and examination

of the released velocity of gaseous components

*衣旗 広志¹, 小玉 貴司¹, 熊谷 幹郎², 鈴木 和則², 林 慎一郎², 松岡 伸吾² ¹日本原燃株式会社,²株式会社 UI 技研

前報(3)では、冷却機能喪失後の HLLW の温度上昇に係る熱収支式を導出するとともに、熱収支式の解に必 要となる水および硝酸放出速度を求めた。本報告では、熱収支式の数値解および気相移行成分の放出速度 変化の把握を行った。

キーワード:ルテニウム,高レベル濃縮廃液,再処理

1. 緒言

前報(3)で導出した冷却機能喪失後の HLLW の温度上昇に係る熱収支式を解き、冷却機能喪失後の HLLW の温度 θ の経時変化を求めた後、前報(1)¹⁾, (3)の θ と気相移行成分(NO₂, NO, O₂, H₂O および HNO₃)の放 出速度の関係を用いて、気相移行成分の放出速度変化の把握を行った。

2. 数値値の導出

水の蒸発速度 Y_W(t)および硝酸の蒸発速度 Y_N(t)を前報(3)で導出した冷却機能喪失後の HLLW の温度上昇 に係る熱収支式に代入すると、(1)式を得ることができる。

$$[\Gamma(t) + \lambda_w M_w(0)\xi_w'(\theta) + \lambda_N M_N(0)\xi_N'(\theta)] d\theta/dt = R_h - R_s - R_{loss} - R_\gamma$$
(1)

(1)式左辺の,は (に関する 微分を表す。この式を時間に関して前進差分で差分化し、左辺の係数および右 辺の値を t_n の時点の値で近似すると、 θ^{n+1} を与える(2)式を得ることができる。

$$\theta^{n+1} = \theta^n + \frac{\left[R_h - R_S(t_n) - R_{loss}(t_n) - R_{\gamma}\right]\Delta t}{\Gamma(t_n) + \lambda_W M_W(0)\xi_W'(\theta^n) + \lambda_N M_N(0)\xi_N'(\theta^n)}$$
(2)

具体的には、75.4s 毎に貯槽温度、壁温度(内 部と表面)を計算する。時間ステップnまで 計算が完了しているとして、 θ^n での NO₂, NO 生成速度を計算し吸熱速度を算出、壁の熱伝 達方程式を解いて表面温度を求め、熱損失速 度を算出、その時点の貯槽内の水量、硝酸量 から熱容量 Γ を算出、その時点の温度から水 の蒸発速度 $M_W(0)d\xi W(\theta)/d\theta$ および硝酸の蒸 発速度 $M_N(0)d\xi N(\theta)/d\theta$ を算出、式(1)左辺の係 数を算出。以上より時間ステップ n+1 までの 温度上昇量を計算し θⁿ⁺¹を算出。所定の温度 または時間に到達したら計算を終了する。

3. 気相移行成分の放出速度変化の把握

図1に HLLW の壊変エネルギー密度5kW m⁻³の場合における気相放出成分のモル流量 の経時変化を示す。冷却機能喪失後の HLLW の θ の経時変化および前報(1)¹⁾, (3)の θ と気相 移行成分の放出速度の関係を用いて求めて

いる。 参考文献

[1] 高レベル濃縮廃液の沸騰乾固事故の研究 (1)模擬廃液を用いた NO₂, NO および O₂ 生成挙動の検討,日本 原子力学会 2019 春の年会 予稿集 3D07

*Hiroshi Kinuhata¹, Takashi Kodama¹, Mikio Kumagai², Kazunori Suzuki², Shin-itiro Hayashi², Shingo Matsuoka² ¹Japan Nuclear Fuel Limited, ²UI Sciences Inc.