Evaluations of neutron induced reaction cross sections for ^{35,36,37}CI

*Jeong-Yeon Lee¹, Shin Okumura², Kohsuke Tsubakihara¹, Satoshi Chiba¹ ¹Tokyo Institute of Technology, ²International Atomic Energy Agency

We have performed evaluations of cross sections for neutron induced reactions, (n,tot), (n, γ), (n,p), (n, α), (n,el), (n,2n), etc. on ^{35,36,37}Cl for molten salt reactors, where chloride U, Pu and/or Th are used as nuclear fuel. We have included covariances in our evaluations. Random files for our Total Monte Carlo analyses of integral quantities also will be provided.

Keywords: chlorine, neutron induced reaction, cross section, evaluation, molten salt reactor.

1. Introduction

There is a project on design of molten salt reactors (MSR), where chloride U, Pu and/or Th are used as nuclear fuel. An MSR is a type of nuclear reactor that uses liquid fuel instead of solid fuel rods used in conventional nuclear reactors. Using liquid fuel provides many advantages in safety and simplicity of design. This work aims at evaluations of cross sections for neutron induced reactions on ³⁶Cl as well as the stable isotopes ³⁵Cl and ³⁷Cl for molten salt reactors.

2. Evaluations of neutron induced reaction cross sections for ^{35,36,37}CI

There are two stable isotopes of chlorine: ³⁵Cl(75.76%) and ³⁷Cl(24.24%). However, by neutron capture, ³⁶Cl will be populated and its half life is 30 k years. The produced ³⁶Cl will affect reactor performance and also will be problematic radioactive nuclear waste. Therefore, we have evaluated the cross sections for neutron induced reactions on ^{35,36,37}Cl for molten salt reactors.

There are several nuclear data evaluations on 35,36,37 Cl but they do not include covariance data. First, we have surveyed the status of experimental and evaluated nuclear data available for neutron induced reactions, (n,tot), (n,p), (n,p), (n,a), (n,el), (n,2n), etc. on 35,36,37 Cl and have compared the data. And we have performed evaluations of the cross sections for neutron induced reactions on 35,36,37 Cl with covariances using the T6 code package including the TALYS [1]. Random files for Total Monte Carlo analyses of integral quantities also will be provided [2].

3. Conclusion

We have performed evaluations of neutron induced reaction cross sections , (n,tot), (n, γ), (n,p), (n, α), (n,el), (n,2n), etc. for ^{35,36,37}Cl with covariances for molten salt reactors. And we have obtained random files for Total Monte Carlo analyses of integral quantities.

References

[1] A.J. Koning and D. Rochman, 'Modern nuclear data evaluation with the TALYS code system', Nuclear Data Sheets 113, 2841 (2012).

[2] A.J. Koning, 'Bayesian Monte Carlo method for nuclear data evaluation', European Physical Journal A, 51 (2015).