2020年秋の大会

核内カスケード模型による(p,nx)反応と(n,px)反応二重微分断面積の計算

Calculation of (p,nx) and (n,px) reactions with Intranuclear cascade model.

*片山 杜萌¹,魚住 裕介¹ ¹九州大学

Intranuclear cascade model にアイソベクトル型巨大共鳴を導入することで, (p,nx)反応について ²⁷Al, ⁹⁰Zr, ²⁰⁸Pb標的核での実験値の再現性が向上し、(n,px)反応について数十から数百 MeV 入射下において、 ¹²Cから¹⁸¹Taの幅広い領域の標的核で実験値を再現できるようになった.

キーワード : INC モデル シミュレーションコード 陽子入射中性子粒子放出 中性子入射陽子粒子放出 アイソベクトル型巨大共鳴

核内カスケード INC は従来入射エネルギー200MeV 以上で有効とされていたが, 近年の改良[1]により適 用下限が 30MeV 程度となっている. (p,nx)反応と(n,px)反応では 30 度以下の前方角で過小評価するが, この 原因はアイソベクトル型巨大共鳴であると考えられる. このため巨大共鳴の取り込みについて研究をおこな った.

計算の方法として、INC に L=0,1,2 の三種類のアイソベクトル型巨大共鳴を導入した。INC 内ではスピン 自由度や核子集団運動は考慮しないため、集団運動に伴うエネルギーの変化のみ考慮する. 各巨大共鳴は確

率的に発生すると仮定し, ピークは Breit-Wigner 型の分布関 数, 角度変更は Bessel 関数を用いて計算した. 巨大共鳴の断 面積については実験値に合うように設定し, (p,nx)反応に対し てはこれらを系統的なエネルギー依存の関数として与えた. 更に, 巨大共鳴は生じる確率やそれぞれの励起エネルギーが 入射エネルギーや核内の中性子余剰数に関係することが分か ったため、これらの関係性を用いて一般化を図った.

その結果 120.0 MeV から 295.0MeV (p,nx)反応に対して Al, Zr, Pb 標的核について, 64.5 MeV から 300 MeV (n,px)反応に対 して数種類の標的(A=12-209)について,実験値を再現できるよ うになった.

図に,120.0 MeV での ²⁰⁸Pb (p,nx)反応と 300.0 MeV での ¹²⁰Sn (n,px)反応の計算結果を示す.破線が従来の INC コード,実線 が本研究での INC コードでの計算結果である.アイソベクト ル型巨大共鳴を組み込むことで実験値を再現できている.

参考文献

[1] Y. Yamaguchi et al., Phys. Rev. C 100 (2019) 034617.

- [2] M. Ichimura et al., Nucl. Phys. Rev. 56 (2006) 446-531.
- [3] W. Scobel et al., Phys. Rev. C 41 (1990) 2010.
- [4] S. A. Long et al., Phys. Rev. C 57 (1998) 3191.

¹Kyushu Univ.

^{*}Tomoe Katayama¹, Yusuke Uozumi¹