2020年春の年会

核融合工学部会セッション

核融合原型炉に向けた研究開発の現状と展望 Status and prospects of R&D for fusion DEMO

(3) 遠隔保守の概念と開発課題

(3) Concept of remote maintenance and R&D issues *菊地 浩一1 1三菱重工

1. 概要

核融合原型炉における遠隔保守の概念は、炉の稼働率のみならず、ブランケットセグメントの支持方法、 配管構造、導体シェル構造などの炉構造に大きく影響するため、これらと整合を取りつつ開発していく必 要がある。本件では、核融合原型炉の遠隔保守の概念と開発課題についての現状を報告する。

2. 遠隔保守の概念

2-1. ブランケット遠隔保守の概念

ブランケットは上部ポートから搬出入することを想定し、ポート開口部の空間的制約を踏まえ1 セクタ 一当たり内側2分割、外側3分割としている。保守時には、上部ポート上方に収納フレーム、昇降機構、 エンドエフェクタ等の遠隔保守用装置を設置して交換作業を実施する。交換手順は、冷却配管の切断・撤 去~ポート経由搬出(外側センター部~外側サイド部~内側の順)~ポート経由搬入~配管持込み・溶接 取付けを想定する。遠隔保守機器の概念を図1に示す。

2-2. ダイバータ遠隔保守の概念

ダイバータは下部ポートから搬出入することを想定し、ポート開口部の空間的制約を考え 1 セクター当 たり 3 分割としている。保守時には、下部ポートに遠隔操作となる保守セル、ラジアルムーバ、牽引車等 を設置して、交換作業を実施する。交換手順は冷却配管の切断・撤去~ポート経由搬出(センター~サイ

ドの順) ~ポート経由搬入~配 管持込み・溶接取付けを想定す る。遠隔保守機器の概念を図2 に示す。

2-3. 遠隔保守に要する時間と 稼働率

上記の遠隔保守概念に基づ き、遠隔保守に要する時間を評 価した。その結果、ブランケッ トについては約60日/ポート、 ダイバータについては約30日 /ポートとなった。 交換頻度を ブランケットは3年、ダイバー タは1年、キャスク2台での並 行作業を想定すると、稼働率は 52%と試算される。

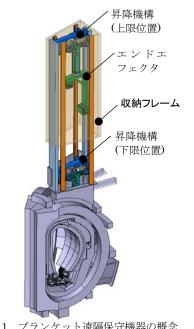
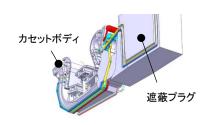



図1 ブランケット遠隔保守機器の概念

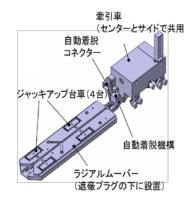


図2 ダイバータ (センター) 遠隔保守機 器の概念

2-4. 開発課題

上記検討から遠隔保守を実現するに当たり必要と考えられる開発課題を整理した。

^{*}Kouichi Kikuchi1

¹Mitsubishi Heavy Industries, LTD.