Comprehensive Stability Improvement of Core-shell Structured Li₄TiO₄-Li₂TiO₃ Tritium Breeding Ceramic Pebbles by Pvp-Assisted Granulation *Ruichong Chen¹, Kazunari Katayama² ¹Sichuan University, ²Kyushu University

Abstract

This work designed a novel approach with PVP acting as a bridging agent when fabricating Li_4TiO_4 - Li_2TiO_3 core-shell pebbles by granulation technology. The phase compositions, morphology and microstructure of Li_4TiO_4 - Li_2TiO_3 core-shell pebble were investigated. Moreover, the water vapor release behavior and weight reduction of Li_4TiO_4 - Li_2TiO_3 core-shell pebble at elevated temperatures under hydrogen atmosphere were also investigated. **Keywords:** tritium breeding materials, core-shell structure

1. Introduction

Li₄TiO₄ is thermodynamically stable at temperatures up to at least 950 °C and has a lithium density of 0.51 g/cm³, which tend to be a promising breeder material. However, the high sensitivity of Li₄TiO₄ to CO₂ makes it not a stable breeder material. In order to take advantage of the high lithium density of Li₄TiO₄ and suppress its instability at the same time, the ideal solution is to cover a layer of Li₂TiO₃ ceramic on the Li₄TiO₄ pebbles.

2. Experimental Section

Fig. 1 illustrates the schematic diagram of PVP assisted synthesis of Li_4TiO_4 - Li_2TiO_3 core-shell green pebbles. First, Solid-state reaction method was used to synthesize Li_4TiO_4 and Li_2TiO_3 powders. After that, Li_4TiO_4 and Li_2TiO_3 powders were separately added to the PVP solution in order to cover a layer of PVP on the surface of powder, which was marked as Li_4TiO_4 @PVP and L_2TiO_3 @PVP powder respectively. Finally, the as-prepared powder through granulation and sintered at 900 °C obtain Li_4TiO_4 - Li_2TiO_3 core shell pebbles.

3. Result and discussion

Fig. 2 shows the typical SEM images of $\text{Li}_4\text{TiO}_4\text{-Li}_2\text{TiO}_3$ core-shell ceramic pebble sintered at 900 °C for 4 h. It can be seen that the coreshell pebble has satisfactory sphericity, and no obvious cracks and pores are found. The cross-section morphology reveals that the coreshell pebble is composed of Li_4TiO_4 core with a diameter of ~700 µm and Li_2TiO_3 shell with a thickness of ~350 µm.

In order to verify the barrier properties of the core-shell ceramic pebble to CO_2 , the sample is heated in 100 vol.% CO_2 atmospheres from room temperature to 900 °C, and the results are shown in Fig. 3. Li_4TiO_4 pebble begin to absorb CO_2 at room temperature, and the CO_2 absorption increases drastically at 350 °C, reaching the maximum value around 750 °C. In addition, it can be found that the curve begins to decline after the temperature is higher than 800 °C, indicating that the CO_2 desorption process has begun. On the other hand, Li_4TiO_4 - Li_2TiO_3 core-shell ceramic pebble apparently did not absorb CO_2 , which can be explained by its high thermal stability and dense structure.

References

[1] T. Hoshino, et al. Fusion Eng. Des., 84 (2-6) (2009) 956-959.

Fig. 2 SEM images of Li_4TiO_4 - Li_2TiO_3 coreshell pebble a sintered at 900 °C for 4 h.

Fig. 3 Temperature dependences of weight change of the pebbles.