T製造高温ガス炉用 Li ロッドの T閉じ込め性能 (2) Li ロッド模擬試験体によるトリチウム閉じ込め性能評価

T-containment performance of Li rod in high-temperature gas-cooled reactor for T production

(2) Evaluation of tritium confinement performance by the assembly simulating Li rod

*片山 一成 ', 平安山 大介 ', 松浦 秀明 ², 大塚 哲平 ³, 後藤 実 4, 中川 繁昭 4, 石塚 悦男 4,

濱本 真平4, 飛田 健次5

¹九大院総理工,²九大院工,³近大,⁴JAEA,⁵QST

Zr 管-Zr 管-Al₂O₃管-石英管からなる Li ロッド模擬試験体およびトリチウム閉じ込め試験システムを構 築した。内側 Zr 管と外側 Zr 管の間にトリチウム含有ガスを供給し、700℃で 87 時間保持した。Al₂O₃ 管外 側のパージガス中には有意なトリチウムは検出されず、長時間の閉じ込めに成功した。

キーワード:トリチウム生産、高温ガス炉、ジルコニウム、アルミナ、水素透過

1. 緒言

DT 核融合炉の開発において、初期装荷トリチウム燃料の確保は重要な課題である。近年、高温ガス炉を 利用したトリチウム生産手法が提案され、その有効性が示されている[1]。しかしながらその実現に向けて は、 炉心に装荷するリチウム(Li)化合物近傍でのトリチウム閉じ込め技術の確立が不可欠である。 本研究グ ループでは、トリチウムを閉じ込める手法のひとつとして、円筒状の Li 化合物をジルコニウム(Zr)で挟み 込み、これをアルミナ(Al₂O₃)で覆う方法を提案し検討を進めている。この Zr-Li 化合物-Zr-Al₂O₃構造を有 するLiロッドのトリチウム閉じ込め性能を評価するため、Zr管-Zr管-Al2O3管からなる片封じの3重管を 作製し、これを石英管に挿入して模擬試験体とした(図1)。本研究では、2つのZr管の間にトリチウム含有 ガスを供給し、提案した構造での高温環境におけるトリチウム閉じ込め性能を評価することを目的とする。

2. 実験内容

Li ロッド模擬試験体の概略図を図1に示す。まず試験体内 側の各空間を真空排気しながら、内側ジルコニウム管に挿入 した熱電対温度が 700℃となるよう石英管外側に設置した電 気炉を用いて3 重管下部を加熱し、数時間脱ガスを行った。 その後、Port1 及び Port3 からアルゴンガスを導入し大気圧で 密封した。Port4 からアルゴンガスを流通させ、出口ガス中に トリチウムが存在する場合は、下流の水バブラーにて捕集さ れる。なおトリチウム化学形(HTO と HT)を弁別して測定 するため、酸化銅塔の前後にバブラーを設置した。前置バブ ラーにHTOが、後置バブラーにHTが捕集されることになる。 最後にトリチウム含有ガスを Port2 から供給し、この状態を保 持した。バブラー水は時間間隔をあけて一部サンプリングし、 液体シンチレータを用いてトリチウム濃度を測定した。試料 ガスの組成はHT:60Bq/cc、HTO:1130Bq/cc、H₂:264ppm、キャ リアガスはアルゴンである。トリチウム供給時間は87時間、 その間の供給圧力は 0.22~0.12MPa であった。

結果及び考察

図2にバブラー中トリチウム濃度の測定結果を示す。明 らかな濃度上昇は見られず、700℃の高温条件下で87時間 に渡ってトリチウムを閉じ込めることに成功したと言える。 実験後、試験体内側に密封されていたアルゴンガス中のト リチウム濃度を測定したが、検出限界以下であった。この ことは、トリチウムがジルコニウム管を透過していないこ とを示す。これは、ジルコニウム管表面に形成されていた 酸化膜により HTO から HT への還元反応が阻害され、トリ チウムのジルコニウム管への溶解が進行しなかったためと 考えられる。今後、HT を主成分とするトリチウム含有ガス を用いた閉じ込め実験を実施する予定である。 [1] H. Matsuura, et al., Nucl. Eng. Des., 143 (2012) 95.

*Kazunari Katayama¹, Daisuke Henzan¹, Hideaki Matsuura², Teppei Otsuka³, Minoru Goto⁴, Shigeaki Nakagawa⁴, Etsuo Ishitsuka⁴, Shinpei Hamamoto⁴, Kenji Tobita⁵: ¹Dept. Eng. Sci, Kyushu Univ., ²Dept. Eng, Kyushu Univ., ³Kindai Univ., ⁴JAEA, ⁵QST

