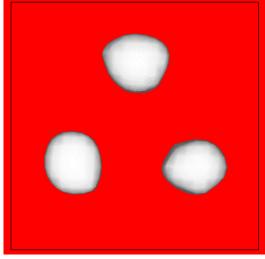
Fused CT imaging technique to improve 3D isotope-selective NRF-CT image

*Khaled Ali^{1,2}, Hideaki Ohgaki¹, Heishun Zen¹, Toshiteru Kii¹, Takehito Hayakawa^{3,4}, Toshiyuki Shizuma³, Hiroyuki Toyokawa⁵, Masahiro Katoh^{6,7}, Masaki Fujimoto⁶, Yoshitaka Taira⁶

¹Kyoto Univ., ²South Valley Univ., ³QST, ⁴Osaka Univ., ⁵AIST, ⁶UVSOR, ⁷Hiroshima Univ.

Abstract

CT imaging based on NRF transmission method has an advantage of isotope selectivity. Using an LCS gamma-ray beam in UVSOR, we demonstrated a 3D NRF-CT image with 4 mm pixel resolution for a sample containing 208Pb isotope. To improve the NRF-CT image quality, a fused visualization technique in combination with a gamma-CT image is introduced. **Keywords:** Computed tomography (CT), Fused visualization (FV), laser Compton scattering gamma-ray beam (LCS), Nuclear Resonance Fluorescence (NRF)


1. Introduction

The combination of computed tomography (CT) and nuclear resonance fluorescence (NRF) transmission method has the isotope-selective imaging capacity to distinguish a specific isotope from a set of isotopes buried within the same sample. We experimentally obtained an isotope selective 3D NRF-CT image of enriched lead isotope (208 Pb) [1]. The NRF-CT imaging technique needs a long data acquisition time, approximately 48 hours, even with the obtained image resolution of 4-mm/pixel in the horizontal plane and 8 mm/pixel in the vertical plane for a cylindrical sample with a diameter of 25 mm and a height of 20 mm. Improving the NRF-CT image resolution is challenging with the current experimental condition. Therefore, we propose a numerical method to improve the NRF-CT image quality using the fusion visualization technique (FV) by combining the NRF-CT image with a gamma-CT image, which can quickly be obtained a better pixel resolution. Both images were measured at the beamline BL1U in UVSOR-III Synchrotron Radiation Facility under the same experimental condition except for the gamma-ray parameters. We used a laser Compton scattering gamma-ray beam (LCS) generated by the collision of a Tm-fiber laser system beam with a wavelength of 1.896 µm and the Synchrotron storage ring electrons beam with an energy of 746 MeV. With the typical 2.4-Watt average power of the laser system, we generated an LCS beam in 1 mm ϕ and 7×10⁶ photon/s flux intensity to obtain a 3D gamma-CT image in 1-mm pixel resolution. With the typical 36-Watt average power of the laser system, we generated an LCS beam in 1 mm ϕ and 7×10⁶ photon/s flux intensity to obtain a 3D gamma-CT image in 1-mm pixel resolution. With the typical 36-Watt average power of the laser system, we generated an LCS beam in 1 mm ϕ and 7×10⁶ photon/s flux intensity to obtain a 3D gamma-CT image in 1-mm pixel resolution. With the typical 36-Watt average power of the laser system, we generated an LCS beam in 2 mm ϕ , 10⁸ photon/s flux intensity, and a 5.528 MeV max

CT. As the CT target, the enriched ²⁰⁸Pb was implied in a cylinder aluminum holder together with a set of different objects, including enriched ²⁰⁶Pb, Fe, Al, and an empty area. We employed the FV technique between the primary gamma-CT and the NRF-CT images, subtracting the atomic absorption component [1] to obtain a 3D FV NRF-CT. Movie 1 shows the fused CT-image of the CT target and clearly shows the locations of the ²⁰⁸Pb rods. In contrast, the rods (²⁰⁶Pb, Fe, Al, and air) were totally disappeared. The FV technique shows a significant advancement for using an isotope-selective CT imaging technique in practical applications in nuclear engineering field.

References

[1] K. Ali, et al., Applied Sciences, vol. 11, no. 8, p. 3415, 10 April 2021.

Movie 1. 3D FV NRF-CT image

Use this link to find the image on vimeo (https://vimeo.com/568768324)