燃料デブリ中の核燃料物質量の定量のための非破壊測定試験 (2)プルトニウムの中性子捕獲γ線の検出

Measurement test of non-destructive assay for quantification of nuclear materials in fuel debris (2) Detection of gamma rays from capture reaction of plutonium

*名内泰志¹、小菅義広²、能見貴佳³、鈴木梨沙³、長谷竹晃³、芝知宙³、高田映²、冠城雅晃³、 奥村啓介³

¹電中研、²NESI、³JAEA

プルトニウム(Pu)試料を計量装置 ENMC 内に配置し、ENMC から漏洩するγ線を HP-Ge 検出器でスペクトル 測定した。この結果、中性子が²³⁹Pu に捕獲された際に生じるγ線が検出された。

キーワード:捕獲 γ線、²³⁹Pu,²⁴⁰Pu, HP-Ge, プルトニウム燃料技術開発センター

1. 緒言 未燃焼 MOX 燃料中のプルトニウム(Pu)核種は 129.3keV などのγ線測定で同定できるが、使用済燃料 は¹³⁷Cs 等の核分裂生成核種(FP)のγ線量が大きいため、662keV より低エネルギーγ線の測定が困難である。一 方、中性子誘導反応で生じるγ線の多くは FP よりも高エネルギーのγ線を生じる。そこで、これを測定し核物 質を同定する中性子照射γ線スペクトル測定 (NIGS) に注目している。数値シミュレーションにより、燃料デ ブリで²³⁸U、²⁴⁰Pu(n, γ)γ線が検出できることが示唆され[1]、またウラン(U)未臨界体系で²³⁸U(n, γ)4060keV γ線 の定量がなされた[2]。一方、この数値シミュレーションの根拠とした熱中性子捕獲γ線データベース CapGam[3]において、2020 年に²⁴⁰Pu 捕獲反応あたりのγ線発生数情報が Unknown に修正された。このため、 Pu 試料への NIGS 測定でどの核種が同定し得るかを改めて調査する必要が生じた。本研究では JAEA のプル トニウム燃料技術開発センターで JAEA がこの測定を行い、JAEA と電中研で同データを分析した。

2. 実験 軽水炉使用済燃料から再処理された Pu 酸 化物試料を封入した鋼製の缶を塩化ビニル製袋に密 閉し、これを Pu 計量装置である ENMC の試料室に 2^{52} Cf とともに配置した。ENMC は正方柱のポリエチ レンブロックの中央に円筒状の試料室を設け、その 試料室を囲うように多数の ³He 比例計数管を円周状 に並べたもので、計数管群の外側は Cd 板が設置さ れている。ENMC からは中性子と γ 線が漏洩する。中 性子をさらに厚さ 10cm のポリエチレンで減衰させ、 また Pu 酸化物試料中の ²⁴¹Am 由来の低エネルギー γ 線(<200keV)を厚さ 4mm の錫板で減衰させて、透 過 γ 線を相対効率>35%の HP-Ge 検出器で 23 時間 (Real time)スペクトル測定した。

3. 結果 図1にスペクトルの全体図を示す。Pu 酸化 物試料中の (α,n)反応及び、Pu 核種と 252Cf の自発核 分裂で生じた中性子が ENMC のポリエチレン等で 減速し、水素、¹¹³Cd、³He 検出器の管材(²⁷Al)、塩化 ビニル製袋(³⁵Cl)、鋼製の缶(⁵⁸Ni, ⁵⁶Fe, ⁵³Cr)に捕獲さ れたことを示すy線が検出され、さらに核分裂即発y 線が確認された。波高 3.8~4.0MeV 領域と 5~5.6MeV 領域の拡大を図2に示す。文献[3]に記載された ²⁴⁰Pu(n, γ) 反応の主要γ線である 3.884, 3.945, 3.988MeVに相当する波高に構造が観察されたが、統 計精度は十分ではなかった。他方 5~5.6MeV では核 分裂即発γ線影響が小さいため文献[3]に記載された ²³⁹Pu(n, γ)5.124、5.575MeV のγ線が確認された。本 結果から、使用済燃料に対しては²³⁹Pu(n, y)反応によ るγ線が測定できる可能性があること、²⁴⁰Pu(n, γ)の検 出には相当の中性子照射が必要となることが示唆さ れた。

図 2²⁴⁰Pu と²³⁹Pu の捕獲γ線スペクトル

参考文献 [1] T. Nagatani, et al., Energy Procedia, 131, Page 258-263, 2017. [2] Y. Nauchi, et al., Proc. ICNC2019, Sep. 15-20. 2019, Paris, France. [3] Thermal Neutron Capture γ 's (CapGam), https://www.nndc.bnl.gov/caogam/, browse on May01, 2021.

* Yasushi Nauchi¹, Yoshihiro Kosuge², Takayoshi Nohmi³, Risa Suzuki³, Taketeru Nagatani³, Tomooki Shiba³, Akira Takada², Masaaki Kaburagi³, Keisuke Okumura³, ¹CRIEPI, ²NESI, ³JAEA.