燃料デブリの臨界管理技術の開発

(52) KUCA での不均一炉心体系を模擬した未臨界度測定試験

Criticality control technique development for Fukushima Daiichi fuel debris

(52) Sub-criticality monitoring test for heterogeneous core configuration in KUCA

*和田 怜志^{1,2}, 加納 慎也^{1,2†}, 矢澤 博之^{1,2}, 三澤 毅³, 北村 康則³

¹IRID, ²東芝エネルギーシステムズ, ³京都大学, ^{1,2†}元所属

福島第一発電所事故で発生した燃料デブリの取り出し作業中の再臨界による被ばくリスク低減のためにファ インマンα法を用いた臨界監視システムの開発を行っている。本発表では燃料デブリで考えられる不均一な 体系を京都大学臨界集合体実験装置(KUCA)で模擬し未臨界度測定した結果と検討内容について報告する。 キーワード:燃料デブリ,未臨界度測定,ファインマンα法,KUCA,不均一炉心体系

1. 緒言

IRID では燃料デブリ取り出し作業中の 未臨界度測定手法としファインマン α法 ¹¹の適用を検討している^[2]。燃料デブリに は、燃焼度の異なる燃料/構造材/コンクリ ートが含まれ、それらが不均一に分布して いる可能性がある。別途実施した MVP に よる解析で、上記のような体系では、検出 器を設置する位置によって、異なる実効増 倍率 *k*eff の推定値が得られることが確認さ れている。こういう現象が実際に起きるの かを確認するため、KUCA で、上記のよう な体系を模擬した試験を実施した。

2. KUCA 試験

2-1. 試験体系

図に実施した KUCA 試験体系の例を示 す。本体系では、ID 21 の燃料体で、燃焼 が進んでいない若い燃料に由来するデブリ が加工されて、水が浸入した状態(反応度 大)を模擬した。ID 22(および 24)の燃料 体で、燃焼が進んでいる燃料に由来するデ ブリが加工されて、水が浸入した状態(反 応度中)を模擬した。ID 26(および 27)の 燃料体で、燃焼が進んでいる燃料に由来す るデブリが加工される前の状態(反応度小) を模擬した。デブリ中に侵入した水はポリ エチレン板、空隙は黒鉛板で模擬した。ID 11 の 3 本の B-10 比例計数管を炉心の前方

図 KUCA 試験体系(例)

検出器位置依存性 12 13 20 14 15 16 17 18 19 21 0.902 0.866 ゐ 0.897 0.891 0.929 0.918 0.903 Ø 0.922 0.901 0.920 お < 0.922 0.928 や

即発中性子寿命/p: 3.7E-5 sec, 実効遅発中性子割合βeff: 8.3E-3 keffの参照解: 0.89

に設置して、位置を変えて測定を実施しそれぞれの位置で得られる keff推定値への影響を評価した。

2-2. 試験結果

図に示した体系から得られた各検出器位置での中性子計数の時系列データから求めた k_{eff} の値を表に示す。 ここで、 k_{eff} の算出に用いる体系の即発中性子寿命p、実効遅発中性子割合 β_{eff} および参照解は、MVP^[3]により事前に求めた。検出器位置が高反応度燃料(ID21)近傍のときに参照解に近い k_{eff} が得られる。一方、低反応度燃料(ID23)付近に検出器を設置すると k_{eff} を過小評価する。検出器を監視対象から離し設置した場合、 k_{eff} は過大評価となる。

3. 結論

不均一の炉心体系に対してファインマンα法の測定値は検出器位置に依存することが確認された。燃料デ ブリに対する検出器の配置は、加工部近傍で、高反応度の燃料デブリに接するように設置することが好まし いと言える。

謝辞本件は、資源エネルギー庁『平成 30 年度補正予算「廃炉・汚染水対策事業費補助金(燃料デブリ・炉内構造物の 取り出し に向けた技術の開発)」』の成果の一部を取りまとめたものである。

参考文献 [1] Feynman. R. P., et al., J. Nucl. Energy **3**, 64-69 (1956). [2] M. Nakano et al, 1I_PL02 (2020), [3] Y. Nagaya et al., JAERI 1348(2005).

*Satoshi Wada^{1, 2}, Shinya Kano^{1, 2†}, Hiroyuki Yazawa^{1, 2}, Tsuyoshi Misawa³ and Yasunori Kitamura³

¹IRID, ²Toshiba Energy Systems & Solutions, ³Kyoto University, ^{1,2†}Retired May 2021.