原子カプラント内で利用可能なポータブル高分解能ガンマ線スペクトロメータの開発(2) 室温での TIBr 検出器の長期安定性

Development of a portable high-resolution gamma-ray spectrometers for nuclear facilities

(2)Long-term stability of TlBr detector at room temperature

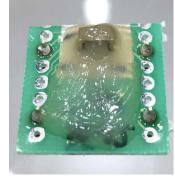
*野上 光博¹, 人見 啓太朗¹, 伊藤 主税², 椿山 邦見³, 渡辺 賢一³, 前田 茂貴²
¹東北大, ²JAEA, ³名古屋大

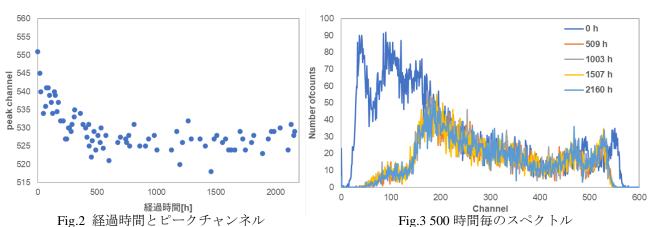
TIBr 検出器はエネルギー分解能の向上や大体積化に関する研究が多くなされる一方で、長期安定性に関する評価はほとんどされてこなかった。そこで、本研究では実際の原子力プラントへの適用を想定して、約 2000 時間連続動作させた際の TIBr 検出器の長期安定性の評価を行なった。

キーワード: TIBr 検出器、高分解能、高速炉、燃料破損検出

1. はじめに

TIBr は高原子番号元素 (TI:81, Br:35) と高密度(7.56 g/cm³)に起因する高いガンマ線吸収効率を有するため、ガンマ線検出器材料として長年研究されてきた。しかしながら、TIBr 検出器関連の研究の多くは、エネルギー分解能の向上や検出器の大体積化に重きをおいたものであり、長期安定性に関する研究はほとんど行なわれてこなかった。そこで、本研究では具体的な適用先候補である高速実験炉「常陽」の定格運転日数 60日よりも長時間である約 2000 時間連続動作させた際の TIBr 検出器の長期安定性の評価を行なった。




Fig.1 TlBr 検出器

2. 長期安定性実験に使用した TIBr 検出器と実験条件

実験に使用した TIBr 検出器を Fig.1 に示す。検出器サイズは $5 \text{ mm} \times 5 \text{ mm} \times 2.119 \text{ mm}$ である。電極は TI 系合金材料を蒸着し作成した。バイアス電圧は-200V を印加し、 $^{137}\mathrm{Cs}$ からの 662 keV のガンマ線の計測を行なった。適用候補である「常陽」のオンラインガンマ線モニタ(OLGM)設置箇所では $50^{\circ}\mathrm{C}$ 程度の環境が想定されるが、ペルチェ素子等で検出器を冷却することも考慮に入れ、実験は室温(約 $20^{\circ}\mathrm{C}$)で行なった。

3. 結果

長期安定性試験の結果を Fig.2 と Fig.3 に示す。662 keV の全吸収ピーク位置は徐々に下がっていき、約600 時間後に安定した。ピーク位置の減少率は約5%であった。しかしながら、ベースラインが揺らいだり、放電気味になったりせずに長時間連続で TlBr 検出器が安定動作することが確認できた。

謝辞 本研究は科研費 (20H02670) の助成を受けたものです。

^{*}Mitsuhiro Nogami¹, Keitaro Hitomi¹, Chikara Ito², Kunimi Tsubakiyama³, Kenichi Watanabe³ and Shigetaka Maeda²

¹Tohoku Univ., ²JAEA, ³Nagoya Univ.