Development of chemical separation of Sn from concrete matrices using TEVA® resin

<u>Van-Khoai Do</u>*1,2, Takahiro Furuse^{1,2}, Yuki Ohta^{1,2}, Yuichi Sano^{1,2},

Hiroyuki Iwahashi^{1,2}, Shunta Homma^{1,2}, Yurina Ichijo^{1,2}, Kiyoko Kurosawa^{1,2},

Tsubasa Endo^{1,2}, Yoshiaki Motoki^{1,2}, Takashi Hirosawa^{1,2}

¹Japan Atomic Energy Agency (JAEA)

²International Research Institute for Nuclear Decommissioning (IRID)

Abstract: This paper presents an HCl-free chemical separation procedure for Sn recovery from concretes. Two pretreatment methods of solution samples followed by a proposed solid-phase extraction on TEVA[®] resin were examined. The obtained results show that Sn can be highly recovered by the developed separation scheme with good reproducibility.

Keywords: ¹²⁶Sn, solid-phase extraction, TEVA®

1. Introduction

Long-lived fission product ¹²⁶Sn (half-life of 2.1x10⁵ years) is one of the 38 critical nuclides, which need to be estimated for radioactive classification and disposal of decommissioning waste collected from the Fukushima Daiichi Nuclear Power Plant (1F). The regulated limit of ¹²⁶Sn content for surface

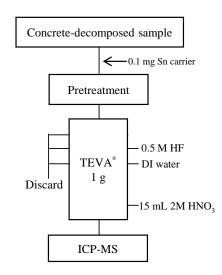


Fig. 1 Schematic separation of Sn

landfill method (trench disposal method) is at 1.3 Bq/g, which can be measured by radiometric methods. The required concentration limit is equivalent to 1.23 ng/g of ¹²⁶Sn, which can be more simply and rapidly detected by ICP-MS. The separation scheme has been developed as a preparation method for estimating ¹²⁶Sn in concrete rubble collected from decommissioning of 1F by the modern ICP-MS.

2. Experimental

The condition for purification of Sn was first investigated with recovering standard Sn on TEVA[®] sorbent. Then, the synthetic concrete dissolved sample was applied to test the effect of matrices. Figure 1 shows the proposed separation scheme. The pretreatment step includes coprecipitation with Fe or evaporation-dissolution to completely remove nitrate (NO₃), which hinders the retention of Sn on the sorbent.

3. Results · Conclusion

Recovery of Sn standard sample was 99.7% \pm 1.8% (2 σ , n=5). Meanwhile, recoveries of Sn from synthetic concrete-decomposed matrices were 102.1% \pm 1.9% (2 σ , n=5) and 98.5% \pm 4.9% (2 σ , n=4) respectively for the coprecipitation and evaporation sample pretreatments, showing good recovery and reproducibility of the developed separation method. Decontamination of ¹²⁶Te was 1.9x10⁴, which measures ratio of the initial weight of ¹²⁶Te carrier against that of ¹²⁶Te found in the final 2M nitric acid eluting fraction. This indicates that the proposed method can be used for purifying ¹²⁶Sn from concretes for its ICP-MS determination.

This presentation includes results obtained under the research program based on subsidy to IRID by METI.