Analysis of mass transfer effect on chemically produced iodine release from aqueous phase *Giedre Zablackaite¹, Hiroyuki Shiotsu¹, Kentaro Kido¹ and Tomoyuki Sugiyama¹ ¹Nuclear Safety Research Center, Japan Atomic Energy Agency

To investigate the mass transfer effect on the overall iodine release to the environment, we propose a chemical-processreduced mass transfer (CPR-MT) model for iodine that is based on two-film theory and includes an effective mass transfer coefficient (\tilde{k}_{mt}). By formally decomposing \tilde{k}_{mt} into iodine chemistry and mass transfer contributions, we discuss their impact for a variety of severe accident conditions of nuclear power station.

Keywords: Iodine chemistry, KICHE, mass transfer coefficient, two-film theory

1. Introduction In the source term evaluation of iodine during a severe accident in nuclear power station, a combination model between iodine chemistry and mass transfer is usually employed to describe the transferring behavior from the aqueous phase to the gas phase as the re-volatilization. In general, it is difficult to separately evaluate the contributions from chemical and mass-transfer processes in the overall iodine release. Therefore, in this study, we attempt it by proposing a chemical-process-reduced mass transfer (CPR-MT) model for iodine. The model is based on the two-film theory and, instead of the conventional mass transfer coefficient (k_{mt}), it includes an effective mass transfer coefficient of iodine (\tilde{k}_{mt}) as a single and optimized parameter. Here, \tilde{k}_{mt} involves the both contributions and is determined by fitting to the time-dependent concentrations of several iodine species. By regarding this coefficient as a function of pH and k_{mt} , we formally separate their contributions (F_{pH} and F_{mt}) from \tilde{k}_{mt} ,

$$\tilde{k}_{\rm mt}(\rm pH, k_{\rm mt}) = F_{\rm pH}F_{\rm mt}\tilde{k}_{\rm mt}^0, \tag{1}$$

where \tilde{k}_{mt}^{0} is the value of \tilde{k}_{mt} under pH and k_{mt} set to 7 and 10^{-5} m/s, respectively.

2. Computational details KICHE code [1] with LIRIC 3.2 [2] reaction database was utilized to evaluate the time-dependent concentrations of iodine species at room temperature. Analytical system was set to the real-size

Figure 1 pH (a) and mass transfer (b) contributions defined in Eq.(1).

torus-shaped suppression chamber in Fukushima Daiichi Unit 3. The initial iodine anion concentration and γ -ray dose rate are 1.0E-5 mol/L and 3 kGy/h, respectively. The gas phase is swept by nitrogen gas with 300 m³/s.

3. Results and discussion Figure 1 plots F_{pH} and F_{mt} as functions of pH and k_{mt} , respectively. In this case, \tilde{k}_{mt}^{0} is 2.26 m/s. Even though there is a very broad peak at pH = 5, the F_{pH} change is small in the acidic range (pH < 7). Hence, in this range, the contribution of mass transfer is significant. Not shown here, the curvature of F_{pH} is dominated by the amount of molecular iodine (I₂) in aqueous phase. Interestingly, in the logarithmic scale, F_{mt} is nearly linear except for a very high rate range. These results show that the uncertainty of k_{mt} (or its product with gas-liquid interfacial area) has a large impact on the source term evaluation for iodine, as well as iodine chemistry.

References [1] Moriyama, K., et al. JAEA-Data/Code 2021-034 (2011). [2] Wren, J.C., et al. Radiat. Phys. Chem., 60, 577-596 (2001).