3N10

鉄、鉛及びビスマスに対する 107 MeV 陽子入射中性子収量の測定と解析

Measurement and analysis of 107-MeV proton-induced neutron yields for iron, lead and bismuth *岩元 大樹 ¹, 明午 伸一郎 ¹, 佐藤 大樹 ¹, 岩元 洋介 ¹, 中野 敬太 ¹, 杉原 健太 ¹,

西尾 勝久 ¹, 石 禎浩 ², 上杉 智教 ², 栗山 靖敏 ², 八島 浩 ², 岡部 晃大 ¹, 牧井 宏之 ¹, 廣瀬 健太郎 ¹, Orlandi Riccardo ¹, 洲嵜 ふみ ¹, 大泉 昭人 ¹, 塚田 和明 ¹, 前川 藤夫 ¹, 森 義治 ² 「原子力機構, ²京大複合研

京都大学のFFAG加速器を用いて、鉄、鉛及びビスマス標的に対する107MeV陽子入射中性子収量を測定し、得られた結果を放射線挙動解析コードPHITSのモデル計算の結果と比較した。

キーワード:加速器駆動システム,核破砕中性子,中性子収量,飛行時間法,PHITS,核反応モデル

1 終章

加速器駆動システム(ADS)の研究開発及び京都大学臨界実験装置(KUCA)における ADS 未臨界炉物理の基礎研究に資する核データを取得することを目的として、京都大学の固定磁場強収束(FFAG)加速器を用いて鉄、鉛及びビスマス標的に対する二重微分中性子収量(TTNY)及び中性子生成二重微分断面積(DDX)を飛行時間法により測定した。測定で得られた TTNY 及び DDX を、放射線挙動解析コード(PHITS)に組み込まれた核反応モデル(INCL4.6/GEM、Bertini/GEM、JQMD/GEM 及び JQMD/SMM/GEM)と評価済み核データライブラリ JENDL-4.0/HE による計算結果と比較した。

2. 測定

実験では、FFAG 加速器から加速されたエネルギー $107\,\mathrm{MeV}$ 、繰り返し $30\,\mathrm{Hz}$ のパルス陽子ビームを、陽子 に対する飛程以上の厚さ $30\,\mathrm{mm}$ の標的及び厚さ $2\,\mathrm{mm}$ または $5\,\mathrm{mm}$ の標的に照射した。陽子照射によって標的から放出される中性子の収量のエネルギー分布を $5-120^\circ$ の角度で測定し、それぞれの標的に対して TTNY

及びDDX を求めた。測定では、小型の液体有機シンチレータ(直径 8 mm×長さ 20 mm) と光電子増倍管で構成される複数の中性子検出器と FPGA を搭載した多チャンネルデジタイザを組み合わせた中性子検出・データ収集システムを用いた。

3. 結果

図1に、鉛標的に対する107 MeV 陽子入射 TTNY の測定結果とモデル計算との比較を示す。20 MeV 以下では、PHITS の標準仕様モデルの INCL4.6/GEM が中性子収量の測定値に最も良く一致した。一方、Bertini INC モデルは後方を過小評価し、JQMD は10–30 MeV で収量を過大評価するなど、使用するモデルによって特徴的な不一致が見られた。さらに、本研究の比較対象とするモデル及び JENDL-4.0/HE は、前方の高エネルギーピークを再現しないことがわかった。

4. 結言

本測定により、鉄、鉛及びビスマスに対する 107 MeV 陽子入射 TTNY 及び DDX を取得した。100 MeV 領域では、米国ロスアラモス国立研究所の Meier ら[1]による TTNY 及び DDX の測定データがあるが、ADS の研究開発で重要な鉛およびビスマスに対する TTNY の取得は本測定が初となる。

参考文献

[1] Meier et al. Nucl. Sci. Eng. 102, 310-321 (1989).

謝辞 本研究は文部科学省原子力システム研究開発事業の助成 JPMXD0219214562 を受けたものです。

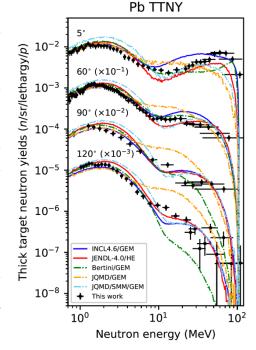


図1 鉛標的に対する 107 MeV 陽子 入射 TTNY の測定結果とモデル計算 との比較

*Hiroki Iwamoto¹, Shin-ichiro Meigo¹, Daiki Satoh¹, Yosuke Iwamoto¹, Keita Nakano¹, Kenta Sugihara¹, Katsuhisa Nishio¹, Yoshihiro Ishi², Tomonori Uesugi², Yasutoshi Kuriyama², Hiroshi Yashima², Kota Okabe¹, Hiroyuki Makii¹, Kentaro Hirose¹, Riccardo Orlandi¹, Fumi Suzaki¹, Akito Oizumi¹, Kazuaki Tsukada¹, Fujio Maekawa¹, Yoshiharu Mori²

¹JAEA, ²Kyoto Univ.