
Synthesis of porous materials through titanium-crosslinking of cage siloxane

(¹Grad. Sch. Advanced Sci. Eng., Waseda Univ., ²Kagami Memorial Research Inst. Materials Sci. Tech., Waseda Univ.) ○ Takuya Hikino,¹ Koki Fujino,¹ Naoto Sato,¹ Hiroaki Wada,¹ Atsushi Shimojima,^{1, 2} Kazuyuki Kuroda^{1, 2} Keywords: Porous Materials; Silica; Cage Siloxane

Introduction Siloxane-based nanoporous materials have a wide range of applications.¹⁾ Cage siloxanes have attracted much attention as building blocks to provide new design that has not been achieved in conventional silica-based porous materials such as zeolites.²⁾ In this study, we synthesized microporous titanosiloxane materials with controlled Ti environments by the cross-linking reaction between cage-type siloxane molecules modified with dimethyl silanol groups and titanium tetraethoxide (Scheme 1).

Experimental Cage siloxane with dimethylsilanol groups was reacted with titanium tetraethoxide in a THF solvent at a molar ratio of Si/Ti = 4 under nitrogen atmosphere. Immediately after the addition of titanium ethoxide to a solution of cage siloxane, the mixture gelled. The gel was stirred at 40 °C to evaporate the solvent, and a white

powder was obtained. The obtained powder was heat-treated at 250 °C for 1 d in air.

Results and Discussion The powder X-ray diffraction pattern of the product showed a broad peak (d = ca. 1.2 nm). The FT-IR spectrum showed the band assigned to Si–O–Ti vibration at 920 cm⁻¹, indicating the formation of Si–O–Ti bonds by the reaction of SiOH groups and TiOEt groups. Solid-state ²⁹Si MAS NMR analysis confirmed that the signal arising from dimethylsilanol groups (–10 ppm) disappeared and a new signal appeared at –17 ppm. The retention of the cage siloxane unit (–109 ppm) was also confirmed. The ¹³C CP/MS NMR spectrum showed no signals due to unreacted ethoxy groups (at 18 ppm and 59 ppm) after the heat treatment. Nitrogen adsorption-desorption isotherms showed that the BET area increased from 46 m²/g to 370 m²/g by the heat treatment, indicating the development of porosity. These results indicate the formation of a novel nanoporous material by cross-linking of cage siloxanes with titanium species.

1) J. Liang et al., Adv. Mater. 2017, 29, 30.

2) A. Shimojima, K. Kuroda, *Molecules* 2020, 25, 524.