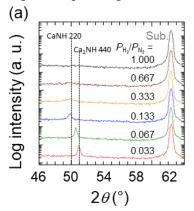
Selective fabrication of Ca₂NH epitaxial thin films using magnetron sputtering system

(¹Department of Materials and Chemical Technology, Tokyo Institute of Technology, ²PRESTO, Japan Science and Technology Agency) ○ Seoungmin Chon,¹ Ryota Shimizu,¹² Shigeru Kobayashi,¹ Kazunori Nishio,¹ Taro Hitosugi¹

Keywords: *Epitaxial thin films*; *Metal nitride hydride*; *Reactive sputtering*;


Ca₂NH is a promising catalyst for the production of NH₃, which is an important chemical such as fertilizers and hydrogen storage [1]. To quantitatively understand the mechanism of the catalytic reactions, epitaxial thin film surfaces can provide an ideal platform due to well-defined size and crystal orientation. However, Ca₂NH thin film has not been reported to date. In addition, due to the structural similarity between Ca₂NH and CaNH, it is difficult to selectively stabilize the Ca₂NH phase using epitaxial effects. In this study, under various gas conditions, we study a route to selectively fabricate Ca₂NH epitaxial thin films using reactive magnetron sputtering.

Ca-N-H thin films were deposited on MgO(110) substrates using reactive magnetron sputtering. A Ca metal plate (diameter of 1 inch) was used as a target material. The substrate temperature was set to 400 °C, and RF power of 30 W was supplied. The total pressure was set to 1.0 Pa, and the partial pressures of Ar, N_2 , and H_2 gases (P_{Ar} , P_{N_2} , and P_{H_2} , respectively) were varied to explore the growth conditions for Ca₂NH phase. The structural properties were characterized by X-ray diffraction (XRD) and Raman spectroscopy. Due to the air-instability of the thin films, air-tight cells were used for the characterizations.

Figure 1a shows out-of-plane XRD patterns of thin films fabricated at different $P_{\rm H2}/P_{\rm N2}$ (0.033 - 1.00). A peak appeared at $2\theta \sim 50.9^{\circ}$ for $P_{\rm H2}/P_{\rm N2} = 0.033$, suggesting Ca₂NH 440. As $P_{\rm H2}/P_{\rm N2}$ increased to 0.13, the peak position was shifted to a lower angle (~ 49.9°), suggesting the phase transition from Ca₂NH to CaNH. Note that there is almost no peak in higher $P_{\rm H2}/P_{\rm N2}$.

This phase transition scenario is also confirmed by Raman spectroscopy. In Figure 1b, a sharp peak appears at 321 cm⁻¹ for $P_{\rm H2}/P_{\rm N2}=0.033$, corresponding to Ca₂NH [1], whereas the peak is diminished as $P_{\rm H2}/P_{\rm N2}$ increased. Namely, Ca₂NH thin film is selectively fabricated in $P_{\rm H2}/P_{\rm N2}=0.033$. To the best of our knowledge, this study is the first report of metal-nitrogenhydrogen epitaxial thin films.

1) M. Kitano et al., Chem. Sci. 2016, 7.

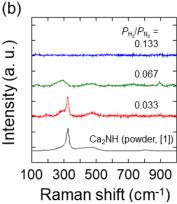


Fig. 1 $P_{\text{H}_2}/P_{\text{N}_2}$ dependence of (a) Out-of-plane XRD patterns and (b) Raman spectra