有機無機ハイブリッドペロブスカイト CH₃NH₃SnBr₃ のラマンスペクトル (早大院・先進理工) ○髙橋 渓太朗・古川 行夫 Raman spectra of organic-inorganic hybrid perovskite CH₃NH₃SnBr₃ (*Graduate School of Advanced Science and Engineering, Waseda University*) ○ Keitaro Takahashi, Yukio Furukawa Organic/inorganic hybrid tin perovskite materials have attracted a great deal of research interest for active materials in solar cells and thermoelectric devices. In this study, we have studied Raman spectra of three crystal phases of MASnBr₃, which show a polymorphism I phase / 185 K / II phase / 230 K / III phase (cubic, Pm3m), at 78, 200, and 298 K with excitation at 633 and 830 nm. The observed bands above 500 cm⁻¹ were assigned to intramolecular vibrations of CH₃NH₃⁺ (MA): ~970 cm⁻¹, C–N⁺ stretch; ~1458 cm⁻¹, CH₃ degenerate deform; ~1473 cm⁻¹, NH₃⁺ symmetric deform; ~2968 cm⁻¹, CH₃ symmetric stretch; 3035 cm⁻¹, CH₃ degenerate stretch. Observed bands below 200 cm⁻¹ were assigned to lattice vibrations. The broad band around 350 cm⁻¹ is assigned to the MA–SnBr₃ cage vibration. The observed wavenumber is higher than that of the corresponding band of MAPbBr₃ [1], indicating that the binding of MA with the SnBr₃ cage is stronger than that of MA with the PbBr₃ cage. The width of this band became broad with increasing temperature, whereas a motional narrowing was reported for the MA-cage vibration for MAPbBr₃ and MAPbI₃ [1]. This result indicates that MA Mobility in the SnBr₃ cage is lower than that in the PbBr₃ cage. Keywords: Raman spectroscopy; Methylammonium tin bromide; Bandwidth ハイブリッド型スズハライドペロブスカイトは太陽電池や熱電素子の材料として注目されている。本研究では、CH₃NH₃SnBr₃ に関して、既に報告されている結晶多形、I 相/185K/II 相/230 K/III 相(立方晶、Pm3m)の各相のラマンスペクトルを、78、200、298 K において、励起光波長 633 と 830 nm で測定した。500 cm⁻¹ より高波数のバンドを CH₃NH₃+(MA)の分子内振動に帰属した:~970 cm⁻¹、C-N+伸縮;~1458 cm⁻¹、CH₃縮重変角;~1473 cm⁻¹、NH₃+対称変角;~2968 cm⁻¹、CH₃対称伸縮;~3035 cm⁻¹、CH₃縮重伸縮。200 cm⁻¹ より低波数のバンドを格子振動に帰属した。350 cm⁻¹付近の幅広いバンドを MA-SnBr₃ケージ振動に帰属した。観測された波数は、MAPbBr₃の波数 330 cm⁻¹ よりも高い。この結果は MA と SnBr₃ケージの結合力が、MA と PbBr₃ケージの結合力よりも強いことを示している。また、このバンドの幅は、温度が高くなると、広くなった。一方、MAPbBr₃ではモーショナルナローイングが報告されており[1]、全く異なる結果が得られた。この結果は、SnBr₃ケージ中の MA の運動性は、PbBr₃ケージ中に存在する MA の運動性よりも低いためと考えられる。1) K. Nakada、Y. Matsumoto、Y. Shimoi、K. Yamada、Y. Furukawa、Molecules、29 (2019) 626.