Direct observation of H₂ dissociation and spillover process on Pd/Cu single atom alloy catalyst surface by spectroscopic method

(¹*Institute for Solid State Physics, University of Tokyo*) \bigcirc Wataru Osada,¹ Shunsuke Tanaka,¹ Kozo Mukai,¹ Jun Yoshinobu¹

Keywords: Hydrogen; Single atom alloy catalyst; Dissociative adsorption; X-ray photoelectron spectroscopy; Infrared reflection absorption spectroscopy

The dissociation of hydrogen molecules on the catalyst surface is an important elementary reaction in various industrial processes. For example, Cu-based catalysts in methanol synthesis reactions show low H₂ dissociation activity, and thus a high temperature is required. However, it is unfavorable for exothermic methanol generation from CO₂ and H₂. More active catalysts for H₂ dissociation are indispensable for efficient hydrogenation reactions. For this purpose, Pd/Cu single atom alloy catalyst (SAAC) is one of the attractive solution, in which a few percent of Cu surface atoms are replaced with Pd atoms. It has been reported that H₂ is dissociated on the Pd/Cu SAAC surface even at low temperatures, and that H atoms spillover onto the Cu host surface¹. In this study, the processes of hydrogen dissociation and spillover on Pd/Cu SAAC surface was investigated using high-resolution X-ray photoelectron spectroscopy (XPS) and infrared reflection absorption spectroscopy (IRAS).

For XPS experiments, the Pd/Cu(977) SAAC was prepared in which the coverage of Pd(θ_{Pd}) was 0.07 ML. The peak of Pd3d_{5/2} was observed at 335.3 eV on the clean SAAC surface. As a function of exposure to H₂ at 80 K, the Pd3d_{5/2} peak was shifted to 335.6 eV and 336.5 eV in two steps(Fig. 1 (a)).

For IRAS experiments, the ML Pd/Cu(111) SAAC was prepared($\theta_{Pd} = 0.01$ ML). Time-resolved IRAS measurements were performed during H₂ exposure at 83 K. The H-Cu vibrational peak appeared at 1143 cm⁻¹ about 300 s after starting H₂ exposure², and it

developed with elapsed time (Fig. 1 (b)).

These results directly indicated the processes of hydrogen dissociaion, adsorption and spillover on the Pd/Cu SAAC surface. The Pd atoms act as a site for H₂ dissociation and initial H adsorption, and the spillover to Cu sites occurs only after Pd sites are saturated with H atoms.

1) G. Kyriakou *et al*, *Science* **2012**, *335*, 1209. 2) K. Mudiyanselage *et al*, *J. Chem. Phys.* **2013**, *139*, 044712.

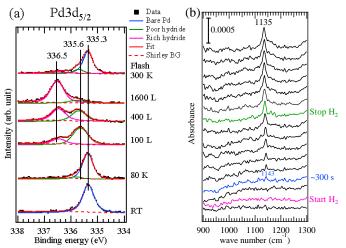


Fig. 1 Results of (a) XPS, hv = 680 eV. (b) IRAS, 4 cm⁻¹ of resolution, 500 scans.