
Superatomic molecules MAu₂₂ (M = Au, Pd): Targeted syntheses via fusion of superatoms and characterization

(¹Graduate School of Science, The University of Tokyo, ²Elements Strategy Initiative for Catalysts and Batteries, Kyoto University) ○Emi Ito,¹ Shinjiro Takano,¹ Tatsuya Tsukuda¹,² **Keywords**: Ligand-Protected Cluster; Gold Superatom

Anisotropic cores of ligand-protected gold clusters can be viewed as quasi molecules composed of superatoms (superatomic molecules). For example, the Au₂₃ core of Au₃₈(SR)₂₄ (RS = thiolate) corresponds to a di-superatomic molecule of two icosahedral Au₁₃ superatoms with 7 electrons. Theoretical calculation suggested that the bonding scheme of the Au₂₃ core is analogous to that of F₂.² Recently, we developed an efficient synthetic method of MM'Au₃₆(SR)₂₄ (M, M' =Pd, Pt) via the hydride-mediated fusion reaction between HMAu₈(PPh₃)₈⁺ and M'Au₂₄(SR)₁₈. The MM'Au₂₁ core corresponding to a dimer of icosahedral M@Au₁₂(6e) and M'@Au₁₂(6e) has different bonding scheme and spin state

from those of O2. Bonding interaction between 1P (a) superatomic orbitals does not generate doubly degenerate SOMOs like O2, but non-degenerated HOMO and LUMO via tilted interaction.³ This study aims to reveal electronic structures and bonding schemes hetero-superatomic molecules $Au_{13}(7e)$ and $Pd(a)Au_{12}(6e)$.

Mass spectrometry and optical spectroscopy confirmed the formation of Au₃₈(SR)₂₄ with biicosahedral Au₂₃ core by the fusion of HAu₉(PPh₃)₈²⁺ and Au₂₅(SR)₁₈. In contrast, mass spectrometry revealed the successful isolation of PdAu₃₇(SR)₂₄ by the fusion of HAu₉(PPh₃)₈²⁺ and PdAu₂₄(SR)₁₈. Single-crystal X-ray diffraction analysis of PdAu₃₇(SR)₂₄ demonstrates the formation of the biicosahedral PdAu₂₂ core (Fig. 1a). The first absorption peak of PdAu₂₂ at ~ 1.0 eV was smaller than that of Pd₂Au₂₁, suggesting LUMO of Pd₂Au₂₁ was Fig. 1. (a) Crystal structure (Color singly occupied in PdAu22 (Fig. 1b). The bonding code: yellow Au; teal Pd; red S; scheme of PdAu₁₂(6e) and Au₁₃(7e) in PdAu₂₂ will be discussed based on the comparison of geometric and PdAu₃₇(SR)₂₄. electronic structure of the cores.

gray C) and (b) Optical spectrum of

1) H. Qian, W. T. Eckenh off, Y. Zhu, T. Pintauer, R. Jin, J. Am. Chem. Soc. 2010, 132, 8280. 2) L. Chen, C. Ren, X. Zhang, J. Yang, Nanoscale 2013, 5, 1475. 3) E. Ito, S. Takano, T. Nakamura, T. Tsukuda, Angew. Chem. Int. Ed. 2021, 60, 645.