3D Porous Ni/NiO_x as a bifunctional oxygen electrocatalyst derived from Freeze-dried Ni(OH)₂

(¹ Graduate School of Science and Technology, Kumamoto University, ² Institute of Industrial Nanomaterials (IINa), Kumamoto University) OYuta shudo,¹ Shinya Hayami^{1, 2} **Keywords**: Nickel; Electrocatalyst; Oxygen evolution reaction; Oxygen reduction reaction; Nickel hydroxide

The concomitant energy crisis has influenced the global research realm to develop some clean and alternative energy devices including Metal-air battery. However, the Metal-air batteries require further development for improving their efficiency and reducing the fabrication cost by using non-precious electrocatalyst.¹⁾ The non-precious transition metals including Mn, Co, Ni have well-reported oxygen bifunctional electrocatalyst.²⁾ For single metal oxides, oxygen electrocatalyst activities following the order of NiO_x >CoO_x > MnO_x., suggest that NiO_x is an excellent electro catalyst alternative to the precious metals.³⁾

Herein, Bifunctional electrocatalytic property of freeze-dried Ni/NiO_x, freeze-dried NiO, freeze-dried Ni(OH)₂ is reported. freeze-dried Ni/NiO_x, freeze-dried Ni was obtained from thermal annealing of the material. Both the Ni(OH)₂ and Ni/NiO_x could sustain with freestanding freeze-dried 3D structures without any carbon support. Freeze-dried Ni/NiO_x exhibited excellent bifunctional electrocatalytic property with the ORR performance at 0.62 V (half-wave potential) and OER at 1.47 V (η = 10 mA cm⁻²). Using freeze-dried metal hydroxide can be considered a wide range of carbon-free applications and improved electrocatalyst performance. The bifunctional catalytic activities were calculated to be 0.86, 0.98 and 1.14 V, respectively for freeze-dried Ni/NiO_x, freeze-dried NiO and freeze-dried Ni(OH)₂. The stacking of 2D sheets into 3D mass seems to play a vital role behind this excellent bifunctionality of freeze-dried Ni/NiO_x. The strategy that is developed, herein can be justified to obtain other transition metal-oriented bifunctional electrocatalysts.

G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson and W. Wilcke, *The J. Phy. Chem. Lett.*,
2010, *1*, 2193. 2) F. Shi, X. Zhu and W. Yang, *Chinese J. Catal.*, **2020**, *41*, 390. 3) S. Jung, C. C. L.
McCrory, I. M. Ferrer, J. C. Peters, T. F. Jaramillo, *J. Mat. Chem. A*, **2016**, *4*, 3068-3076.