Synthesis and structure of porous ionic crystals based on delta-Keggin-type aluminum polyoxocation

(¹Department of Basic Science, School of Arts and Sciences, The University of Tokyo) Wei ZHOU¹, Naoki OGIWARA¹, Zhewei WENG¹, Sayaka UCHIDA¹ Keywords: Polyaluminum Hydroxide; Polyoxometalates; Ionic Crystal

Aluminum is the third most abundant element in the earth's crust and has complex solution chemistry. The hydrolysis of aluminum salts in water produces an array of polyoxoaluminum clusters with various sizes, widely used in catalysis, water treatment, and as pillaring agents.^[1] Among the polyoxoaluminum clusters, $[Al_{13}O_4(OH)_{24}(H_2O)_{12}]^{7+}$ (Al₁₃) has five possible isomers of the Baker–Figgis–Keggin (Keggin) structure: α , β , γ , δ , and ε . We have previously obtained all-inorganic porous ionic crystals (PICs) by combining oppositely charged molecular ions (macroions) with T_d symmetry, ε -Keggin-type cation [ε -Al₁₃O₄(OH)₂₄(H₂O)₁₂]⁷⁺ (ε -Al₁₃) and α -Keggin-type anions (e.g., [α -CoW₁₂O₄₀]⁶⁻).^[2] However, isomers/derivatives of δ -Al₁₃ have been rarely reported in recent years. The present study describes the synthesis and structural characterization of a PIC of [δ -Al₁₃O₄(OH)₂₅(H₂O)₁₁][α -CoW₁₂O₄₀]·29H₂O [I].

The all-inorganic PIC of **I** crystallized through a dissolution–recrystallization reaction in water for 3 days. Single crystal X-ray diffraction analysis reveals that oppositely charged macroions are combined, δ -Al₁₃ with C_{3v} symmetry (Figure 1a) and $[\alpha$ -CoW₁₂O₄₀]^{6–} with T_d symmetry (Figure 1b). Compound **I** contains 1D-channels with large apertures (ca. 13 Å × 6.5 Å) along the *b*-axis (Figure 1c) and is applicable as a solid catalyst in environmentally friendly acid reactions. To the best of our knowledge, this is the first example of isolating δ -Al₁₃ polycation without capping sodium ions in the solid-state.^[3,4]

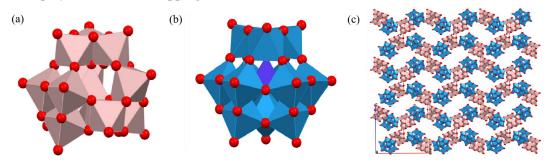


Figure 1.The crystal structure of (a) δ -Al₁₃ (b) α -CoW₁₂O₄₀^{6–} and (c) I along *b*-axis

1)W. H. Casey, *Chem. Rev.* **2006**, 106, 1, 1–16. 2) S. Uchida., et al, *Cryst. Growth Des.* **2016**, 16, 4968–4974. 3)T.Z. Forbes., et al, *Cryst. Growth Des.* **2012**, 12, 2044–2051.4) J. Rowsell and L. F. Nazar, *J. Am. Chem. Soc.* **2000**, 122, 3777–3778.