・酸素非含有金属錯体前駆体を用いた白金-ランタノイド系合金ナ ノ粒子の調製

(名大院理 1・名大物国セ 2) ○佐藤 光彦 1・邨次 智 1・唯 美津木 1,2

Preparation of Pt-Ln (Lanthanide) Bimetallic Alloy Nanoparticles from Metal Complex Precursors with O-Free Ligands (¹Graduate School of Science, Nagoya University, ²Research Center for Materials Science, Nagoya University) OMitsuhiko Sato, ¹ Satoshi Muratsugu, ¹ Mizuki Tada^{1, 2}

We prepared platinum (Pt) - lanthanide (Ln) alloys of pure metal compositions, which would be expected to have higher oxygen reduction reaction activity compared with bulk Pt-Ln alloys. Pt and La complexes without O atoms, (1,5-cyclooctadiene)dimethylplatinum (Pt(C_8H_{12})(CH $_3$)₂ (**A**)) and tris(tetramethylcyclopentadienyl)lanthanum (La(C_9H_{13})₃, (**B**)) were used as precursors, and they were heated and reduced with diluted ammonia gas under the strict oxygen and water-free conditions. The reduction successfully produced pure Pt₅La alloyed nanoparticles without the formation of Pt or La₂O₃ phases, as suggested from XRD and TEM analyses. The grafting of **A** and **B** on boron nitride and successive reduction under similar conditions provided the formation of smaller Pt₅La alloy nanoparticles.

Keywords: Platinum, Lanthanide, Alloy, Nanoparticle

バルクでは単独の白金 (Pt) より高い酸素還元反応特性を示すことが報告されている Pt-ランタノイド (Ln) 合金は燃料電池触媒としての利用が期待されている。しかし、Ln の高い酸素親和性や酸化物の安定性から Pt-Ln 合金のナノ粒子化の調製は難しく、高純度の Pt-Ln 合金ナノ粒子調製法は未だ確立されていない。本研究では、酸化物を含まない純度の高い Pt-Ln 合金ナノ粒子の調製法の検討を行った。

Pt, Ln の原料として、Ln 酸化物生成の由来となり得る O 原子を含まない配位子からなる Ln 錯体に着目した。Ln として最も融点が低いランタン (La) を選択し、Pt 前駆体として (1,5-cyclooctadiene)dimethylplatinum $(Pt(C_8H_{12})(CH_3)_2, (A))$ 、Ln 前駆体とし

て tris(tetramethyl cyclopentadienyl)lan thanum (La(C₉H₁₃)₃, (**B**)) を用いた。**A**, **B** をモル比 5/1 で混合し、酸素、水を厳密に遮断した流通系反応装置で、希釈

Pt + La $\frac{NH_3/N_2 = 7/43 \text{ sccm}}{1273 \text{ K, 24 h}}$ Pt-La alloy nanoparticles Pt(C₈H₁₂)(CH₃)₂ (A) La(C₉H₁₃)₃ (B)

図1 Pt-La 合金ナノ粒子の調製スキーム。

 NH_3 ガスを還元剤とし 1273 K で 24 h 加熱還元を行った (図 1)。 反応後の物質の XRD からは Pt_5La 組成相が確認され、Pt、 La_2O_3 に帰属されるピークは確認されなかったことから、 Pt_5La の生成を確認した (図 2)。 次に、高温安にな窒化ホウ素 に A, B を担持し、同条件で加熱還元を行ったところ、 Pt_5La (2-11) 面 (2 θ = 39.2°) に帰属されるピークの半値幅がみられ、TEM 分析と併せて Pt_5La 合金ナノ粒子の生成が確認された。

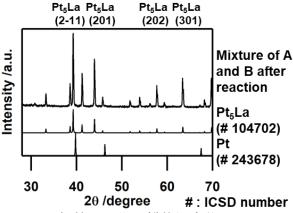


図2 加熱還元後の錯体混合物の XRD。