
Preparation of high loading Pd-CHA by dispersion of bulk Pd and its NO adsorption/desorption property

(¹Institute for Catalysis, Hokkaido University, ²Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto) oShunsaku Yasumura,¹ Taihei Ueda,¹ Hajime Ide,¹ Takashi Toyao, ^{1,2} Zen Maeno¹, Ken-ichi Shimizu^{1,2}

Keywords: *Pd loaded CHA zeolite, Passive NOx adsorber, in-situ IR spectroscopy, DFT calculation*

Passive NOx adsorber (PNA) is a promising approach to reduce NOx emission from vehicle engines during a cold-start period (< 200 °C) where NOx are trapped at low temperatures and then released at the operating temperature for selective catalytic reduction system (e.g. NH₃-SCR system). Pd-loaded CHA zeolites (Pd-CHA) have recently attracted attention as promising PNAs because of the great hydrothermal stability of CHA zeolite framework and NO adsorption ability of loaded Pd²⁺ cations. However, the preparation of high-loading Pd-CHA is still difficult by a conventional aqueous ion-exchange method due to the strong water solvation of cations, which are too bulky to access the small pores of CHA zeolite.¹⁾

In this study, we achieved the preparation of high-loading Pd-CHA based on NOfacilitated atomic dispersion of bulk Pd.²⁾ Under a 4% NO flow at 600 °C, bulk metal Pd (particle sizes in the 50-100 nm range) outside CHA zeolites effectively disperses, affording Pd²⁺ cations on paired Al sites with concomitant formation of N₂O. The highest Pd loading amount (Pd: 4.1 wt%) was achieved among the previously reported methods. In the NO adsorption/desorption experiment, the desorption temperature for the Pd-CHA with higher loading was higher compared to the one with lower loading (Pd: 0.5 wt%). DFT calculations revealed that the strength of NO adsorption on Pd²⁺ cations depend on the local structure of surrounding paired Al sites.

- 1) Y. Zheng, L. Kovarik, M. H. Engelhard, Y. Wang, Y. Wang, F. Gao, J. Szanyi, *J. Phys. Chem. C* 2017, *121*, 15793.
- 2) S. Yasumura, H. Ide, T. Ueda, Y. Jing, C. Liu, K. Kon T. Toyao, Z. Maeno, K. Shimizu, *JACS Au* **2021**, in press. DOI:10.1021/jacsau.0c00112