Aerobic Dehydrogenation of Saturated Ketones Using CeO₂-Supported Pd-on-Au Bimetallic Nanoparticle Catalysts

(¹School of Engineering, The University of Tokyo) ○ Daisuke Takei,¹ Takafumi Yatabe,¹ Tomohiro Yabe,¹ Kazuya Yamaguchi¹

Keywords: Aerobic Dehydrogenation; Gold; Palladium; Bimetallic Nanoparticle; Heterogeneous Catalyst

 α,β -Unsaturated carbonyl compounds are important in organic synthesis because they are useful as not only bioactive substances but also synthetic intermediates. One of the ideal α,β unsaturated ketone syntheses is direct α,β -dehydrogenation of saturated carbonyl compounds. The α,β -dehydrogenation was typically performed using a stoichiometric amount of oxidants with the corresponding byproducts. Recently, environmentally-friendly aerobic α,β dehydrogenations have been developed using homogeneous Pd(II) catalysts.^{1,2} However, to our knowledge, there are no reports on selective α,β -dehydrogenation using O₂ in the presence of supported Pd heterogeneous catalysts, although heterogeneously catalyzed systems have many advantages in terms of green chemistry.

In this study, we successfully prepared a dispersed Pd(II)-on-Au bimetallic nanoparticle catalyst supported on CeO₂ (Pd/Au molar ratio = 1/5, Pd/Au/CeO₂), which enabled heterogeneously catalyzed aerobic selective α,β -dehydrogenation of saturated ketones to α,β -unsaturated ketones for the first time.³ We carried out the dehydrogenation of cyclohexanone, a typical saturated ketone, using supported nanoparticle catalysts (Table 1). While CeO₂-supported Au nanoparticles (Au/CeO₂, entry 2), CeO₂-supported Pd nanoparticles (Pd/CeO₂, entry 3) or physical mixture of Au/CeO₂ and Pd/CeO₂ (entry 4) did not catalyze the aerobic dehydrogenation, Pd/Au/CeO₂

specifically showed a high catalytic activity (TOF = 122 h⁻¹ based on Pd) for the α , β -dehydrogenation compared with those of previously reported homogeneous systems (2–3 h⁻¹).^{1,2} Besides cyclohexenones, this system has a wide range of substrate scopes; various α , β -unsaturated compounds, including bioactive substances and enaminones, can be synthesized from the corresponding saturated ketones (22 examples).

M. Tokunaga, S. Harada, T. Iwasawa,
Y. Obora, Y. Tsuji, *Tetrahedron Lett.*

2007, *48*, 6860. 2) T. Diao, S. S. Stahl, *J. Am. Chem. Soc.* **2011**, *133*, 14566. 3) D. Takei, T. Yatabe, X. Jin, T. Yabe, N. Mizuno, K. Yamaguchi, *ACS Catal.* **2020**, *10*, 5057.