配位駆動フォールディング集合による β バレル構造の拡張と機能化 (東大院工¹・JST さきがけ²・分子研³) 〇小野塚 凌¹・岩崎 航¹・澤田 知久^{1,2}・藤田 誠^{1,3} Expansion and Functionalization of a β-barrel via metal-induced folding and assembly (¹*Grad. School of Engineering, The University of Tokyo*, ²*JST PRESTO*, ³*IMS*) ORyo Onozuka, Wataru Iwasaki, Tomohisa Sawada, Akada Pakata Iwasaki, Makata Iwasa We have studied construction of protein-mimic structures through the concerted folding and assembly of short peptide ligands and metal ions. Previously, the chemical synthesis of a 6-stranded β -barrel has been achieved by the Zn(II) ion-triggered self-assembly of octapeptide 1, in which a β -strand-forming FVFV and a loop-forming PGP sequences were linked by an aromatic spacer. In this work, we found that the incorporation of diethylene glycol chains into the peptide ligand (2) induced a larger 8-stranded β -barrel. The NMR and X-ray crystallographic analyses revealed the dynamic structural interconversion between 6-stranded and 8-stranded barrels. We also succeeded in introduction of hydrophilic side chains in the cavity by replacing one of valine residues with a threonine residue in the peptide ligand (3). Keywords: peptide; β -barrel; β -sheet; self-assembly; folding 当研究室では、短鎖ペプチドと金属イオンのフォールディング集合によるタンパク質の模倣構造の構築を行っている。これまでに、 β ストランドをとる FVFV 配列のペプチドとループ配座をとる PGP 配列のペプチドとを芳香族スペーサーを介して繋ぎ合わせたオクタペプチド 1 を設計し、亜鉛との錯形成により、6本鎖の β バレル構造の合成に成功している 1 。本研究では、ジエチレングリコール鎖で修飾したオクタペプチド 2 から、より大きな8本鎖の β バレルの構築に成功した。NMR 測定と X 線結晶構造解析により、6本鎖と8本鎖の β バレル構造間での動的な構造変換があることも確認した。さらに1カ所のバリンをトレオニンに変更した配位子 3 の錯形成も進行し、内部に親水性側鎖の導入にも成功した。 1) M. Yamagami, T. Sawada, M. Fujita, J. Am. Chem. Soc. 2018, 140, 8644-8647.