
バルビツール酸を有するクロロフィル誘導体の超分子ポリマー形成

(千葉大工 ¹・千葉大 IGPR ²・立命館大 ³) ○土田 亮真 ¹・矢貝 史樹 ²・民秋 均 ³ Supramolecular Polymerization of Chlorophyll Derivatives Bearing Barbituric Acid (¹Faculty of Engineering, Chiba University, ²Institute for Global Prominent Research, Chiba University, ³Ritsumeikan University) ○Ryoma Tsuchida¹, Shiki Yagai², Hitoshi Tamiaki³

We previously investigated supramolecular polymerization of molecules bearing barbituric acid and various π -conjugated core.¹⁾ In this study, we newly synthesized 1 (free base form) and 2 (zinc form) possessing chlorophyll as the π -conjugated core of chlorophyll supramolecular polymer,²⁾ and investigated their supramolecular polymerization (Figure 1a). Solvent mixing method of 1 resulted in formation of short non-helical fibers immediately after preparation, and they transferred to helical fibers with time (Figure 1b,c). UV/vis spectroscopic measurements revealed that these aggregates were formed through H-type stacking of chromophores. On the other hand, in the case of 2, nanoparticles were formed immediately after the preparation, and gradually transferred helical fibers.

Keywords: Chlorophyll; Supramolecular Polymer; Hydrogen Bond; Barbituric Acid; Helical Structure

我々はこれまで、水素結合部位としてバルビツール酸を有する様々な π 共役化合物の超分子ポリマー形成について調査してきた。 $^{1)}$ 本研究では、クロロフィルからなる超分子ポリマー $^{2)}$ の π 共役部位にクロロフィルを有する $\mathbf{1}$ (フリーベース体) および $\mathbf{2}$ (亜鉛体)を新規に合成し、それらの超分子ポリマー形成について調査した (Figure 1a)。 $\mathbf{1}$ を溶媒混合法により低極性溶媒中で自己集合させると、調製直後は短いファイバーが形成されたが、時間経過でラセン構造を有するファイバーへと構造転移した (Figure 1b,c)。 UV/vis スペクトルから、クロリン骨格が \mathbf{H} 会合型のスタッキング様式で積層していることが示唆された。同様の手法で $\mathbf{2}$ を自己集合させると、調製直後にナノ粒子を形成し、これが時間経過に伴ってラセン構造を有するファイバーへと構造転移した。これらの結果と分子構造の関係性について考察する。

Figure 1. a) Molecular structures of **1** and **2**. AFM images of b) non-helical and c) helical fibers of **1**.

- 1) S. Yagai, et al., Acc. Chem. Res. 2019, 52, 1325–1335.
- 2) S. Shoji, H. Tamiaki, et al., Nano Lett. **2016**, 16, 3650–3654.