The Relation between Relaxation Time and Mechanical Properties of Supramolecular Hydrogels

(¹Graduate School of Science, Osaka University, ²School of Science, Kitasato University, ³Project Research Center for Fundamental Sciences, Osaka University, ⁴School of Engineering, The University of Tokyo, ⁵The Institute of Science and Industrial Research, Osaka University, ⁶Institute for Co-Creation Studies, Osaka University, ⁷Institute for Open and Transdisciplinary Research Initiatives, Osaka University) O Subaru Konishi,¹ Yu Kashiwagi,¹ Go Watanabe,² Motofumi Osaki,^{1,3} Takuya Katashima,⁴ Osamu Urakawa,¹ Hiroyasu Yamaguchi,^{1,3} Tadashi Inoue,^{1,3} Akira Harada,⁵ Yoshinori Takashima^{1,3,6,7}

Keywords: Reversible cross-link; Host-guest interaction; Viscoelasticity; Relaxation time; Fracture energy

Design of cross-links makes great impacts on mechanical properties and functionality of polymeric materials. In particular, reversible cross-links constructed by noncovalent bonds have been used as a mechanism for dissipating mechanical energy to improve toughness.¹ Herein, we prepared supramolecular hydrogels cross-linked by host-guest interactions using cyclodextrins (CDs) and cation-terminated alkyl guest units (Fig. 1).² We investigated the relation between the second-order relaxation time $(\langle \tau \rangle_w)$ and fracture energy $(G_{\rm f})$ of the hydrogels with the purpose of establishing a general strategy for tough materials.

Linear viscoelastic measurements revealed that $\langle \tau \rangle_{\rm w}$ of the hydrogels was controlled by the kinetics of host-guest interactions derived from potential barrier of cation units.^{3,4} Mechanical properties was evaluated by tensile tests, and the α CD-PyC11 hydrogel showed highest $G_{\rm f}$. We investigated the effect of the viscoelastic behavior of the reversible cross-links on $G_{\rm f}$ using product of $\langle \tau \rangle_{\rm w}$ and strain rate ($\dot{\epsilon}_{\rm c}$) (**Fig. 2**). $G_{\rm f}$ within $\dot{\epsilon}_{\rm c} \langle \tau \rangle_{\rm w}$ of 1~10 showed a local maximum, indicating that the viscoelastic behavior of the reversible cross-links improved $G_{\rm f}$ of the α CD-R hydrogels.

X. Zhao, Soft Matter 2014, 10, 672–687.
S. Konishi, et al., Polym. Chem. 2020, 11, 6811-6820.
Yonemura, H. et al. J. Phys. Chem .1992, 96, 5765-5770.
A. Harada, J. Am. Chem. Soc. 2000, 122, 3797-3798.

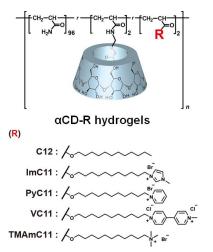
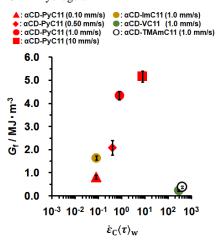



Figure 1. Chemical structures of the α CD-R hydrogels.

Figure 2. The relation between $G_{\rm f}$ and $\varepsilon_{\rm C} \langle \tau \rangle_{\rm W}$ of the α CD-R hydrogels.