
Design and evaluation of mechanical properties of dissimilar polymer knitting materials with movable cross-links

(¹Graduate School of Science, Osaka University, ²Graduate School of Organic Material Engineering, Yamagata University, ³JASRI, ⁴PRC, Osaka University, ⁵ISIR, Osaka University, ⁶Institute for Advanced Co-Creation Studies, Osaka University, ⁷OTRI, Osaka University) ○Ryohei Ikura,¹ Shunsuke Murayama,² Yuka Ikemoto,³ Motofumi Osaki,^{1,4} Hiroyasu Yamaguchi,¹ Akira Harada,⁵ Go Matsuba,² Yoshinori Takashima^{1,4,6,7}

Keywords: Cyclodextrin; Supramolecular elastomer; Host-guest interaction; Movable cross-linking; Polymer blending

[Introduction] A design of cross-links affects mechanical properties of polymeric materials. Previously, the movable cross-links were formed during the bulk polymerization between cyclodextrin (CD) monomer and main chain monomer¹. Herein. we designed the materials where movable cross-links connect between dissimilar polymers, and evaluated their mechanical properties.

Figure 1. Prots of fracture energy *vs* Young's modulus for pBA-PAc γ CD (10, 1) \supset pEA (89), p(BA-EA)-PAc γ CD (10, 89, 1), and pBA / pEA (10, 90).

[Result] The dissimilar polymer knitting materials with movable cross-links (pBA-PAcyCD $(x, y) \supset pEA(z)$ were obtained by bulk polymerization of ethyl acrylate (EA) in the presence of the peracetylated-yCD modified poly(butyl acrylate) (pBA-PAcyCD). For evaluation of mechanical properties, tensile tests were carried out (Fig. 1). The polymer blend materials without cross-linking (pEA / pBA (10, 90): comparison) exhibited low fracture energy and plastic deformation. On the other hand, pBA-PAcyCD (10, 1) \supset pEA (89) showed higher fracture energy and clear fracture point. These results indicated that CD unit acts as cross-linking point to improve the fracture energy. In addition, the fracture energy of pBA-PAcyCD (10, 1) \supset pEA (89) is 1.9 times larger than that of the copolymer of EA and BA with movable cross-links (p(BA-EA)-PAcyCD (10, 89, 1): comparison). To evaluate stress dispersion property, we observed stress relaxation of test pieces stretched at 400%. As a result, the stress of pBA-PAcyCD (10, 1) \supset pEA (89) decreased faster than that of p(BA-EA)-PAcyCD (10, 89, 1). The sliding of CD units in p(BA-EA)-PAcyCD (10, 89, 1) were limited by another CD units as bulk stopper. pBA- PAcyCD (10, 1) \supset pEA (89) have more space over which CD unit can slide, leading effective stress dispersion to realize higher fracture energy.

1) R. Ikura, J. Park, M. Osaki, H Yamaguchi, A. Harada, Y. Takashima, *Macromolecules* 2019, 52, 6953-6962