Study of the Mechanism of Selective Recognition of *p-tert*-Butylcalix[4]thiacrown-5 for Organic Mercury(II) Compounds

(Faculty of Pharmaceutical Sciences, Kobe Gakuin University) OTatsuya Takimoto, Yuu Hashimoto, Gen Inoue, Kazuhito Hioki, Hideaki Sasaki

Keywords: *p-tert*-Butylcalix[4]thiacrown-5; Selective Trapping of Organic Mercury(II) Compounds; ¹H-NMR Titration; Binding Constant; Computational Simulation

We have synthesized calix[4]thiacrown derivatives¹⁾ and investigated their recognition abilities to mercury(II) picrate dissolved in water solution by solid-liquid absorption experiment.²⁾ To research more easily the abilities, the behavior of ¹H-NMR chemical shifts of the thiacrown moieties in the coexistence of ion species is followed at present.¹⁾ In this study, we investigated the affinity of the thiacrown moiety of *p-tert*-Butylcalix[4]thiacrown-5 (1) to alkali, alkaline-earth metal, and some mercury(II) ions (Fig. 1). In addition, the binding constants of 1 to mercury(II) compounds, HgCl₂, HgBr₂, and Hg(CH₃COO)₂ were estimated. Finally, the recognition ability of 1 for mercury(II) compounds was discussed by using computational simulation.

As shown Fig. 1, the affinity of the thiacrown moiety of **1** was investigated to some inorganic compounds, NaCl, KCl, CsCl₂, CaCl₂, HgCl₂ in ¹H-NMR study. In the presence of the only HgCl₂, some chemical shifts of the thiacrown moiety of **1** moved into the low magnetic field. Furthermore, the binding constants were estimated to **1**-mercury(II) complexes using ¹H-NMR titration. The calix[4]thiacrown exhibited the highest affinity to Hg(CH₃COO)₂ among the three compounds, and the binding constant was 6.3 x 10⁴ M⁻¹. That shows the calix[4]thiacrown trapped organic mercury(II) compounds specifically. The reason for the selective affinity of **1** to ones was discussed by the conformations predicted from the ¹H-NMR spectral analysis and computational simulation of **1**-mercury(II) complexes.

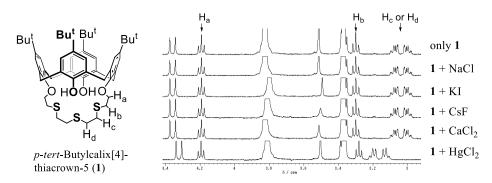


Figure 1. ¹H-NMR spectra of 1 in the presence of various inorganic compounds.

1) T. Takimoto, H. Tsue, H. Takahashi, *Heterocycles*, **2014**, *88*, 911. 2) T. Takimoto, H. Tsue, R. Tamura, H. Sasaki, *Heterocycles*, **2015**, *90*, 842.