Mechanistic Investigations of CO₂-reduction Using Supramolecular Photocatalyst Fixed on Solid Surface

(Sch. Sci., Tokyo Tech.) ODaiki Saito, Osamu Ishitani

Keywords: Supramolecular photocatalyst; Heterogeneous catalyst; CO₂ reduction

CO₂-reduction photocatalysts play a crucial role for developing artificial photosynthesis. Ru(II) metal complexes have been investigated as catalysts to reduce CO₂ and produce CO and HCOOH^[1,2]. However, the reaction mechanisms of these metal complexes are still unclear. In this study CO₂ reduction mechanism of a

supramolecular photocatalyst consisting of Ru(II) photosensitizer and Ru(II) catalyst units^[3] was investigated (**RuRu**, Figure 1). **RuRu** was fixed on Al₂O₃ particles to prevent intermolecular collisions and its photocatalysis was investigated in detail by changing adsorbing density and photocatalytic reaction conditions for CO₂ reduction.

The **RuRu** supramolecular photocatalysts were adsorbed on alumina particles by stirring in MeCN for 7 days. The adsorption density of **RuRu**/Al₂O₃ was controlled at 5 µmol g⁻¹ where the distance between the neighboring **RuRu** molecules on the Al₂O₃ is much larger than the molecular length of **RuRu**. The **RuRu**/Al₂O₃ particles were dispersed into a dimethylacetamide-triethanolamine (DMA-TEOA) mixed solution containing 0.1 M of 1benzyl-1,4-dihydronicotinamide (BNAH) as a one-electron donor and irradiated at $\lambda > 480$ nm under CO₂ atmosphere. Both CO and HCOOH was photocatalytically produced. The selectivity of HCOOH formation increased (from 91% to 94%) at lower irradiated light intensity. This strongly suggests that lower efficiency of the electron injection from the one-electron-reduced Ru photosensitizer unit to the Ru catalyst unit predominates the formation of HCOOH. On the

other hand, CO selectivity ($S_{CO} = CO/(HCOOH+CO) \times 100$) dramatically increased from 11% to 76% by decreasing the concentration of TEOA from 1.5 M to 0 M (Figure 2). We discuss about the photocatalytic reaction mechanism of CO₂ reduction.

[1] Ishida, H.; Tanaka, K.; Tanaka, T. Chem. Lett. 1988, 339.

[2] Kuramochi, Y.; Itabashi, J.; Fukaya, K.; Enomoto, A.; Yoshida, M.; Ishida, H. *Chem. Sci.*, **2015**, *6*, 3063.

[3] Tamaki, Y.; Morimoto, T.; Koike, K.; Ishitani, O. *Proc. Natl. Acad. Sci. U. S. A.*, **2012**, *109*, 15673.

Figure 2. The relationship between TEOA concentration and CO selectivity.