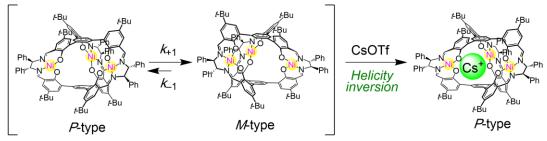
Selective encapsulation of alkali metal ions in a chiral trinickel(II) metallocryptand and its regulation of helicity inversion

(¹WPI-Nano Life Science Institute, Kanazawa University, ²Graduate School of Natural Science and Technology, Kanazawa University) \bigcirc Sk Asif Ikbal,¹ Yoko Sakata,^{1,2} Shigehisa Akine^{1,2}


Keywords: Selective encapsulation; Chirality; Helix inversion; Alkali metal ions; Nickel complex

Dynamic helical molecules, which are capable of undergoing reversible helicity inversion, are useful as a basic framework for chiral switching systems.¹ There have been several examples of dynamic helical molecules whose helix inversion rates can be tuned by changing solvent polarity, constituent metal ions of helicates, etc.^{2,3} However, in order to efficiently control the helix inversion rate, combination of such a dynamic helix inversion with host-guest complexation would be effective.

We have synthesized a novel tris(salen)-type trinickel(II) metallocryptand having six chiral carbon centers (Scheme 1). This complex was characterized by various spectroscopic techniques such as ¹H NMR, ESI-MS, UV-vis, CD spectroscopy, X-ray crystallography, etc. The nickel(II) metallocryptand underwent a dynamic conversion between the P and M isomers in solution, preferring one isomer in a ratio of up to 10:90. In contrast, the single crystals showed the presence of both P and M isomers exactly in a 1:1 ratio in the unit cell. Guest encapsulation studies on a series of alkali metal ions were performed with this metallocryptand. Whereas it showed first negative Cotton effect (tentatively assigned to the M-type helicity) in the absence of guests, the complexation with CsOTf caused the CD signal inversion (P-type helicity major). We will present such helicity inversion and helicity control behaviour associating with the encapsulation of a series of alkali metal ions.

Dynamic equilibrium

Alkali metal ion encapsulation

Scheme 1. Helical metallocryptand for recognition of alkali metal ions and helicity inversion.

1) H. Miyake, H. Tsukube, Chem. Soc. Rev., 2012, 41, 6977-6991.

- 2) S. Akine, T. Taniguchi, T. Matsumoto, T. Nabeshima, Chem. Commun., 2006, 4961-4963.
- 3) S. Akine, M. Miyashita, S. Piao, T. Nabeshima, Inorg. Chem. Front., 2014, 1, 53-57.